Davies Peter F, Polacek Denise C, Shi Congzhu, Helmke Brian P
Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Biorheology. 2002;39(3-4):299-306.
The completion of the Human Genome Project and ongoing sequencing of mouse, rat and other genomes has led to an explosion of genetics-related technologies that are finding their way into all areas of biological research; the field of biorheology is no exception. Here we outline how two disparate modern molecular techniques, microarray analyses of gene expression and real-time spatial imaging of living cell structures, are being utilized in studies of endothelial mechanotransduction associated with controlled shear stress in vitro and haemodynamics in vivo. We emphasize the value of such techniques as components of an integrated understanding of vascular rheology. In mechanotransduction, a systems approach is recommended that encompasses fluid dynamics, cell biomechanics, live cell imaging, and the biochemical, cell biology and molecular biology methods that now encompass genomics. Microarrays are a useful and powerful tool for such integration by identifying simultaneous changes in the expression of many genes associated with interconnecting mechanoresponsive cellular pathways.
人类基因组计划的完成以及小鼠、大鼠和其他基因组测序工作的持续进行,催生了大量与遗传学相关的技术,这些技术正渗透到生物研究的各个领域;生物流变学领域也不例外。在此,我们概述了两种截然不同的现代分子技术,即基因表达的微阵列分析和活细胞结构的实时空间成像,如何被用于体外与可控剪切应力相关的内皮机械转导以及体内血液动力学的研究。我们强调这些技术作为全面理解血管流变学组成部分的价值。在机械转导方面,建议采用一种系统方法,该方法涵盖流体动力学、细胞生物力学、活细胞成像以及目前包含基因组学的生化、细胞生物学和分子生物学方法。微阵列通过识别与相互连接的机械反应性细胞途径相关的许多基因表达的同步变化,是实现这种整合的一种有用且强大的工具。