Suppr超能文献

血管内皮的生物力学激活作为其功能表型的一个决定因素。

Biomechanical activation of vascular endothelium as a determinant of its functional phenotype.

作者信息

Garcia-Cardeña G, Comander J, Anderson K R, Blackman B R, Gimbrone M A

机构信息

Vascular Research Division, Department of Pathology and the Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4478-85. doi: 10.1073/pnas.071052598.

Abstract

One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.

摘要

血管内皮是心血管系统仅一层细胞厚的内膜,其显著特征之一是表型可塑性。多种病理生理因素,如细胞因子、生长因子、激素和代谢产物,可在健康和疾病状态下调节其功能表型。除了这些体液刺激外,内皮细胞对其生物力学环境也有反应,尽管这种生物力学激活模式的功能意义尚未得到充分探索。在此,我们描述了一项高通量基因组分析,该分析针对在体外培养的人内皮细胞中观察到的基因表达调节情况,这些细胞暴露于两种明确的生物力学刺激下——稳定的层流切应力和时空平均强度相当的紊流切应力。对11397个独特基因的转录活性进行比较,揭示了与每种刺激类型相关的独特上调和下调模式。转录谱数据的聚类分析与其他分子和细胞生物学技术相结合,以研究这些生物力学激活的整体模式是否转化为不同的功能表型。对结构蛋白和收缩蛋白进行共聚焦免疫荧光显微镜观察,发现层流切应力可诱导形成复杂的顶端细胞骨架。细胞周期分析表明,层流切应力和紊流切应力对细胞增殖有不同影响。因此,内皮细胞有能力区分特定的生物力学力,并将这些输入刺激转化为独特的表型。血流动力学衍生刺激可成为内皮基因表达的强力调节剂,这一发现对于我们理解血管稳态和动脉粥样硬化发生机制具有重要意义。

相似文献

10
Endothelial dysfunction, hemodynamic forces, and atherogenesis.内皮功能障碍、血流动力学因素与动脉粥样硬化形成
Ann N Y Acad Sci. 2000 May;902:230-9; discussion 239-40. doi: 10.1111/j.1749-6632.2000.tb06318.x.

引用本文的文献

本文引用的文献

1
Connective tissue growth factor: what's in a name?结缔组织生长因子:名字里有什么含义?
Mol Genet Metab. 2000 Sep-Oct;71(1-2):276-92. doi: 10.1006/mgme.2000.3059.
7
Endothelial dysfunction, hemodynamic forces, and atherogenesis.内皮功能障碍、血流动力学因素与动脉粥样硬化形成
Ann N Y Acad Sci. 2000 May;902:230-9; discussion 239-40. doi: 10.1111/j.1749-6632.2000.tb06318.x.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验