Suppr超能文献

果蝇驾驶舱中的神经网络。

Neural networks in the cockpit of the fly.

作者信息

Borst A, Haag J

机构信息

Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jul;188(6):419-37. doi: 10.1007/s00359-002-0316-8. Epub 2002 Jun 7.

Abstract

Flies have been buzzing around on earth for over 300 million years. During this time they have radiated into more than 125,000 different species (Yeates and Wiegmann 1999), so that, by now, roughly every tenth described species is a fly. They thus represent one of the most successful animal groups on our planet. This evolutionary success might, at least in part, be a result of their acrobatic maneuverability, which enables them, for example, to chase mates at turning velocities of more than 3000 degrees s(-1) with delay times of less than 30 ms (Land and Collett 1974; Wagner 1986). It is this fantastic behavior, which has initiated much research during the last decades, both on its sensory control and the biophysical and aerodynamic principles of the flight output (Dickinson et al. 1999, 2000). Here, we review the current state of knowledge about the neural processing of visual motion, which represents one sensory component intimately involved in flight control. Other reviews on this topic have been published with a similar (Hausen 1981, 1984; Hausen and Egelhaaf 1989; Borst 1996) or different emphasis (Frye and Dickinson 2001; Borst and Dickinson 2002). Because of space limitations, we do not review the extensive work that has been done on fly motion-sensitive neurons to advance our understanding of neural coding (Bialek et al. 1991; Rieke et al. 1997; de Ruyter et al. 1997, 2000; Haag and Borst 1997, 1998; Borst and Haag 2001). Unless stated otherwise, all data presented in the following were obtained on the blowfly Calliphora vicina which we will often casually refer to as 'the fly'.

摘要

苍蝇在地球上嗡嗡飞舞已经有超过3亿年的时间了。在此期间,它们已经演化出12.5万多种不同的物种(耶茨和威格曼,1999年),以至于目前每十个被描述的物种中大约就有一个是苍蝇。因此,它们是我们这个星球上最成功的动物群体之一。这种进化上的成功可能至少部分归因于它们的灵活机动性,例如,这使它们能够以超过3000度每秒的转弯速度追逐配偶,延迟时间不到30毫秒(兰德和科利特,1974年;瓦格纳,1986年)。正是这种奇妙的行为,在过去几十年里引发了大量关于其感官控制以及飞行输出的生物物理和空气动力学原理的研究(迪金森等人,1999年、2000年)。在这里,我们回顾了关于视觉运动神经处理的当前知识状态,视觉运动是飞行控制中密切涉及的一个感官组成部分。关于这个主题的其他综述已经发表,重点类似(豪森,1981年、1984年;豪森和埃格尔哈夫,1989年;博斯特,1996年)或不同(弗莱和迪金森,2001年;博斯特和迪金森,2002年)。由于篇幅限制,我们没有回顾为增进我们对神经编码的理解而在苍蝇运动敏感神经元方面所做的大量工作(比亚莱克等人,1991年;里克等人,1997年;德鲁伊特等人,1997年、2000年;哈格和博斯特,1997年、1998年;博斯特和哈格,2001年)。除非另有说明,以下呈现的所有数据均来自红头丽蝇,我们将经常随意地称之为“苍蝇”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验