Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
Nat Commun. 2024 Oct 12;15(1):8830. doi: 10.1038/s41467-024-53173-w.
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in Drosophila and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly's lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations.
动物依赖代偿动作来维持稳定性并有效地在环境中导航。这些动作依赖于全局视觉运动线索,称为光流。虽然光运动反应一直是研究昆虫光流补偿的传统焦点,但它的简单性不足以确定涉及视觉航向控制的复杂光流处理网络的作用。在这里,我们揭示了一系列在果蝇中进行的航向控制行为,并将它们与特定的神经回路联系起来。我们表明,在蝇类的小眼板中对光流敏感的神经元的双侧电耦合对于正确的航向控制是必需的。这种电相互作用与 HS-H2 网络内的化学突触一起,控制着转向行为的动力学和方向。我们的发现揭示了昆虫如何利用双侧运动线索进行导航,为 HS-H2 网络赋予了新的功能意义,并暗示了缝隙连接在非线性操作中的先前未知作用。