Suppr超能文献

The role of human red blood cell membrane skeletal proteins in repetitive membrane strain and rupture.

作者信息

Baumann Martin

机构信息

Institute of Physiology, RWTH Aachen, Germany.

出版信息

Mol Membr Biol. 2002 Apr-Jun;19(2):149-53. doi: 10.1080/09687680210137228.

Abstract

The influence of the membrane skeleton on cell membrane deformability, elasticity, and rupture after repetitive cycles of membrane strain, release and rupture was investigated. Human red blood cells were electrofused to doublets, which showed the post-fusion oscillation-movement. Geometrical developments of heat-treated cells were measured and compared to control cells. Alterations of cluster length and fusion zone diameter during repetitive colloidosmotic swelling period grow with heat treatment, and the number of precedent swell phases has minor influence on these values. Irrespective of the treatment, the geometrical doublet configuration at which a membrane rupture is initiated has an almost constant roundness index of 0.89. Increasing heat treatment temperature was shown to affect both deformability and elasticity of the membrane, such that doublets start each swell phase of the oscillation cycle from decreased roundness values. Evidence is given that there is a difference in the mechanical properties between the membrane at the fusion zone and the membrane of native red blood cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验