Suppr超能文献

源自含酚类神经递质的自由基的促氧化活性。

Prooxidant activity of free radicals derived from phenol-containing neurotransmitters.

作者信息

Siraki Arno G, O'Brien Peter J

机构信息

Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ontario, Canada M5S 2S2.

出版信息

Toxicology. 2002 Aug 1;177(1):81-90. doi: 10.1016/s0300-483x(02)00197-x.

Abstract

It has been suggested that biogenic amines may partake in neurodegenerative disease processes by causing oxidative stress. In the following, we present evidence showing for the first time that biogenic amines can form prooxidant radicals when metabolized. The order of prooxidant activity of neurotransmitter phenols or hydroxyindoles in catalyzing beta-nicontinamide adenine dinucleotide (reduced) (NADH) or cysteine cooxidation found when metabolically activated by peroxidase/H(2)O(2) was tyramine>N-acetyltyrosine>tyrosine>serotonin>N-acetylserotonin, 5-hydroxyindoleacetic acid (5-HIAA). This order likely reflects the reactivity of the phenoxyl radicals (for phenols) as extensive oxygen activation accompanied the NADH oxidation and only catalytic amounts of H(2)O(2) were required. The low reactivity of the hydroxyindoles suggests that the redox potential of the radical (semiquinone-imine radical?) was too low to oxidize NADH and/or that the radical dimerization rate was too rapid. The order of catalytic effectiveness for phenolic or hydroxyindole neurotransmitters in catalyzing ascorbate cooxidation on the otherhand, was N-acetylserotonin>serotonin>5-HIAA>>tyramine>N-acetyltyrosine>tyrosine. The first formed hydroxyindole radical product was likely the active cooxidizing species formed from hydroxyindoles. The order for catecholamine catalytic effectiveness in catalyzing NADH or ascorbate cooxidation rate was N-acetyldopamine>3,4-dihydroxyphenylacetic acid (DOPAC)>dopamine>norepinephrine>(-)-3,4-dihydroxyphenylalanine (L-DOPA)>epinephrine which correlated with the second-order rate constant for the peroxidase/H(2)O(2) catalyzed oxidation of the catecholamines. However, the total amount of NADH oxidized was proportional to the amount of H(2)O(2) added and was not accompanied by oxygen uptake, suggesting that NADH was oxidized by the o-quinone metabolite formed by semiquinone radical disproportionation. These results show that biogenic amines form prooxidant radicals, when metabolized by peroxidase, cooxidize cellular antioxidants (ascorbate, NADH, or cysteine).

摘要

有人提出,生物胺可能通过引起氧化应激参与神经退行性疾病过程。在下文中,我们首次展示了证据,表明生物胺在代谢时可形成促氧化自由基。当由过氧化物酶/H₂O₂进行代谢激活时,神经递质酚类或羟基吲哚在催化β - 烟酰胺腺嘌呤二核苷酸(还原型)(NADH)或半胱氨酸共氧化时的促氧化活性顺序为:酪胺 > N - 乙酰酪氨酸 > 酪氨酸 > 5 - 羟色胺 > N - 乙酰5 - 羟色胺、5 - 羟基吲哚乙酸(5 - HIAA)。该顺序可能反映了苯氧自由基(对于酚类)的反应活性,因为大量的氧活化伴随着NADH氧化,并且仅需要催化量的H₂O₂。羟基吲哚的低反应活性表明自由基(半醌 - 亚胺自由基?)的氧化还原电位过低而无法氧化NADH和/或自由基二聚化速率过快。另一方面,酚类或羟基吲哚神经递质在催化抗坏血酸共氧化时的催化有效性顺序为:N - 乙酰5 - 羟色胺 > 5 - 羟色胺 > > 5 - HIAA > 酪胺 > N - 乙酰酪氨酸 > 酪氨酸。首先形成的羟基吲哚自由基产物可能是由羟基吲哚形成的活性共氧化物种。儿茶酚胺在催化NADH或抗坏血酸共氧化速率方面的催化有效性顺序为:N - 乙酰多巴胺 > 3,4 - 二羟基苯乙酸(DOPAC) > 多巴胺 > 去甲肾上腺素 > ( - ) - 3,4 - 二羟基苯丙氨酸(L - DOPA) > 肾上腺素,这与过氧化物酶/H₂O₂催化儿茶酚胺氧化的二级速率常数相关。然而,氧化的NADH总量与添加的H₂O₂量成正比,并且不伴随氧摄取,这表明NADH被半醌自由基歧化形成的邻醌代谢物氧化。这些结果表明,生物胺在由过氧化物酶代谢时会形成促氧化自由基,使细胞抗氧化剂(抗坏血酸、NADH或半胱氨酸)发生共氧化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验