Lai Jean, Gouldstone Andrew, Butler James P, Federspiel William J, Loring Stephen H
Physiology Program, Harvard School of Public Health, Boston, MA 02115, USA.
Respir Physiol Neurobiol. 2002 Aug 1;131(3):233-43. doi: 10.1016/s1569-9048(02)00091-5.
The pleural space is modeled in two dimensions as a thin layer of fluid separating a deformable membrane and a rigid surface containing a bump. We computed the steady-state membrane configuration and fluid pressure distribution during relative sliding of the two surfaces. For physiologically relevant values of membrane tension, shear flow-induced pressures near the bump and far-field pressure gradients are similar to those measured in vivo within the pleural space (e.g. Lai-Fook et al.) [J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56 (1984) 1633-1639]. Deformation of the membrane over the bump suggests that the pressure field generated by the sliding motion promotes an even layer of fluid in the pleural space, preventing asperities from touching. Results also suggest a possible mechanism for pleural fluid redistribution during breathing, whereby irreversible fluid motion is associated with the deformability of the membrane.
胸膜腔在二维模型中被模拟为一层薄薄的液体,分隔着一个可变形的膜和一个带有凸起的刚性表面。我们计算了两个表面相对滑动过程中的稳态膜构型和流体压力分布。对于生理相关的膜张力值,凸起附近的剪切流诱导压力和远场压力梯度与在胸膜腔内体内测量的值相似(例如Lai-Fook等人[《应用生理学杂志:呼吸、环境与运动生理学》56 (1984) 1633 - 1639])。膜在凸起上的变形表明,滑动运动产生的压力场促进了胸膜腔内均匀的流体层,防止粗糙表面相互接触。结果还表明了呼吸过程中胸膜液再分布的一种可能机制,即不可逆的流体运动与膜的可变形性相关。