Suppr超能文献

来自大肠杆菌的δ1-吡咯啉-5-羧酸还原酶的部分纯化及某些性质

Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli.

作者信息

Rossi J J, Vender J, Berg C M, Coleman W H

出版信息

J Bacteriol. 1977 Jan;129(1):108-14. doi: 10.1128/jb.129.1.108-114.1977.

Abstract

delta1-Pyrroline-5-carboxylate (PCA) reductase [L-proline:NAD(P)+5-oxidoreductase, EC 1.5.1.2] has been purified over 200-fold from Escherichia coli K-12. It has a molecular weight of approximately 320,000. PCA reductase mediates the pyridine nucleotide-linked reduction of PCA to proline but not the reverse reaction (even at high substrate concentrations). The partially purified preparation is free of competing pyridine nucleotide oxidase, PCA dehydrogenase, and proline oxidase activities. The Michaelis constant (Km) values for the substrate, PCA, with reduced nicotinamide adenine dinucleotide phosphate (NADPH) or NADH as cofactor are 0.15 and 0.14 mM, respectively. The Km values determined for NADPH and NADH are 0.03 and 0.23 mM, respectively. Although either NADPH or NADH can function as cofactor, the activity observed with NADPH is severalfold greater. PCA reductase is not repressed by growth in the presence of proline, but it is inhibited by the reaction end products, proline and NADP.

摘要

δ1-吡咯啉-5-羧酸(PCA)还原酶[L-脯氨酸:NAD(P)+5-氧化还原酶,EC 1.5.1.2]已从大肠杆菌K-12中纯化了200多倍。它的分子量约为320,000。PCA还原酶介导吡啶核苷酸连接的PCA还原为脯氨酸,但不介导逆反应(即使在高底物浓度下)。部分纯化的制剂不含竞争性吡啶核苷酸氧化酶、PCA脱氢酶和脯氨酸氧化酶活性。以还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)或NADH为辅因子时,底物PCA的米氏常数(Km)值分别为0.15和0.14 mM。为NADPH和NADH测定的Km值分别为0.03和0.23 mM。虽然NADPH或NADH均可作为辅因子发挥作用,但观察到的NADPH活性要高几倍。PCA还原酶不会因在脯氨酸存在下生长而受到抑制,但会受到反应终产物脯氨酸和NADP的抑制。

相似文献

1
Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli.
J Bacteriol. 1977 Jan;129(1):108-14. doi: 10.1128/jb.129.1.108-114.1977.
3
Purification and characterization of rat lens pyrroline-5-carboxylate reductase.
Biochim Biophys Acta. 1986 Mar 19;881(1):72-8. doi: 10.1016/0304-4165(86)90098-x.
6

引用本文的文献

1
An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control.
NPJ Syst Biol Appl. 2022 Aug 19;8(1):30. doi: 10.1038/s41540-022-00242-9.
2
Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms.
Microb Cell Fact. 2021 Apr 21;20(1):87. doi: 10.1186/s12934-021-01579-2.
4
Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol.
Appl Microbiol Biotechnol. 2011 Jan;89(1):63-72. doi: 10.1007/s00253-010-2851-5. Epub 2010 Aug 31.
6
Construction of a proline-producing mutant of the extremely thermophilic eubacterium Thermus thermophilus HB27.
Appl Environ Microbiol. 1998 Nov;64(11):4328-32. doi: 10.1128/AEM.64.11.4328-4332.1998.
7
Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana.
Plant Physiol. 1993 Nov;103(3):771-81. doi: 10.1104/pp.103.3.771.
8
Proline transport and metabolism in Rickettsia prowazekii.
J Bacteriol. 1984 May;158(2):460-3. doi: 10.1128/jb.158.2.460-463.1984.

本文引用的文献

3
PROLINE METABOLISM IN ESCHERICHIA COLI. 3. THE PROLINE CATABOLIC PATHWAY.
Arch Biochem Biophys. 1964 Aug;107:325-31. doi: 10.1016/0003-9861(64)90338-8.
4
Inhibition of dehydrogenase reactions by a substance formed from reduced diphosphopyridine nucleotide.
Biochim Biophys Acta. 1961 Nov 25;54:210-2. doi: 10.1016/0006-3002(61)90962-3.
8
Control of proline synthesis in Escherichia coli.
Biochim Biophys Acta. 1965 Jul 8;104(2):397-404. doi: 10.1016/0304-4165(65)90345-4.
9
Metabolism of glutamic acid in a mutant of Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1304-7. doi: 10.1128/jb.90.5.1304-1307.1965.
10
The occurrence of two dehydroquinases in Neurospora crassa, one constitutive and one inducible.
Proc Natl Acad Sci U S A. 1967 Nov;58(5):1930-7. doi: 10.1073/pnas.58.5.1930.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验