Suppr超能文献

幽门螺杆菌26695的全基因组代谢模型

Genome-scale metabolic model of Helicobacter pylori 26695.

作者信息

Schilling Christophe H, Covert Markus W, Famili Iman, Church George M, Edwards Jeremy S, Palsson Bernhard O

机构信息

Genomatica, Inc., San Diego, California 92121, USA.

出版信息

J Bacteriol. 2002 Aug;184(16):4582-93. doi: 10.1128/JB.184.16.4582-4593.2002.

Abstract

A genome-scale metabolic model of Helicobacter pylori 26695 was constructed from genome sequence annotation, biochemical, and physiological data. This represents an in silico model largely derived from genomic information for an organism for which there is substantially less biochemical information available relative to previously modeled organisms such as Escherichia coli. The reconstructed metabolic network contains 388 enzymatic and transport reactions and accounts for 291 open reading frames. Within the paradigm of constraint-based modeling, extreme-pathway analysis and flux balance analysis were used to explore the metabolic capabilities of the in silico model. General network properties were analyzed and compared to similar results previously generated for Haemophilus influenzae. A minimal medium required by the model to generate required biomass constituents was calculated, indicating the requirement of eight amino acids, six of which correspond to essential human amino acids. In addition a list of potential substrates capable of fulfilling the bulk carbon requirements of H. pylori were identified. A deletion study was performed wherein reactions and associated genes in central metabolism were deleted and their effects were simulated under a variety of substrate availability conditions, yielding a number of reactions that are deemed essential. Deletion results were compared to recently published in vitro essentiality determinations for 17 genes. The in silico model accurately predicted 10 of 17 deletion cases, with partial support for additional cases. Collectively, the results presented herein suggest an effective strategy of combining in silico modeling with experimental technologies to enhance biological discovery for less characterized organisms and their genomes.

摘要

基于幽门螺杆菌26695的基因组序列注释、生化及生理数据构建了一个全基因组规模的代谢模型。这代表了一个很大程度上源自基因组信息的计算机模型,该生物体的生化信息相较于之前建模的生物体(如大肠杆菌)要少得多。重建的代谢网络包含388个酶促反应和转运反应,涉及291个开放阅读框。在基于约束的建模范式内,运用极端途径分析和通量平衡分析来探究该计算机模型的代谢能力。分析了该网络的一般属性,并与先前针对流感嗜血杆菌得出的类似结果进行了比较。计算了该模型生成所需生物量成分所需的基本培养基,结果表明需要8种氨基酸,其中6种对应于人体必需氨基酸。此外,还确定了一系列能够满足幽门螺杆菌大部分碳需求的潜在底物。进行了一项缺失研究,即删除中心代谢中的反应及相关基因,并在多种底物可用性条件下模拟其效果,得出了一些被认为是必需的反应。将缺失研究结果与最近发表的17个基因的体外必需性测定结果进行了比较。该计算机模型准确预测了17个缺失案例中的10个,对其他案例也有部分支持。总体而言,本文给出的结果表明了一种将计算机建模与实验技术相结合的有效策略,以加强对特征较少的生物体及其基因组的生物学发现。

相似文献

1
Genome-scale metabolic model of Helicobacter pylori 26695.
J Bacteriol. 2002 Aug;184(16):4582-93. doi: 10.1128/JB.184.16.4582-4593.2002.
5
Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices.
Biophys J. 2003 Feb;84(2 Pt 1):794-804. doi: 10.1016/S0006-3495(03)74899-1.
6
Extreme pathway lengths and reaction participation in genome-scale metabolic networks.
Genome Res. 2002 Dec;12(12):1889-900. doi: 10.1101/gr.327702.
7
Flux coupling analysis of genome-scale metabolic network reconstructions.
Genome Res. 2004 Feb;14(2):301-12. doi: 10.1101/gr.1926504. Epub 2004 Jan 12.
9
Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks.
Metab Eng. 2010 Mar;12(2):105-11. doi: 10.1016/j.ymben.2009.05.004. Epub 2009 May 28.

引用本文的文献

1
Modeling for understanding and engineering metabolism.
QRB Discov. 2025 Feb 18;6:e11. doi: 10.1017/qrd.2025.1. eCollection 2025.
2
Metabolic modelling as a powerful tool to identify critical components of Pneumocystis growth medium.
PLoS Comput Biol. 2024 Oct 28;20(10):e1012545. doi: 10.1371/journal.pcbi.1012545. eCollection 2024 Oct.
3
Logistic PCA explains differences between genome-scale metabolic models in terms of metabolic pathways.
PLoS Comput Biol. 2024 Jun 24;20(6):e1012236. doi: 10.1371/journal.pcbi.1012236. eCollection 2024 Jun.
5
Identification and In Silico Characterization of Novel Glucose-6-Phosphate Dehydrogenase Inhibitors.
Molecules. 2021 Aug 16;26(16):4955. doi: 10.3390/molecules26164955.
6
Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens.
Front Cell Dev Biol. 2020 Nov 3;8:566702. doi: 10.3389/fcell.2020.566702. eCollection 2020.
8
Multi-tissue to whole plant metabolic modelling.
Cell Mol Life Sci. 2020 Feb;77(3):489-495. doi: 10.1007/s00018-019-03384-y. Epub 2019 Nov 20.
10
Finding MEMo: minimum sets of elementary flux modes.
J Math Biol. 2019 Oct;79(5):1749-1777. doi: 10.1007/s00285-019-01409-5. Epub 2019 Aug 6.

本文引用的文献

2
Transcriptomes, transcription activators and microarrays.
FEBS Lett. 2001 Jun 8;498(2-3):140-4. doi: 10.1016/s0014-5793(01)02478-4.
4
Metabolic modeling of microbial strains in silico.
Trends Biochem Sci. 2001 Mar;26(3):179-86. doi: 10.1016/s0968-0004(00)01754-0.
7
Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families.
Infect Immun. 2000 Jul;68(7):4155-68. doi: 10.1128/IAI.68.7.4155-4168.2000.
8
Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.
J Bacteriol. 2000 Jun;182(11):3204-9. doi: 10.1128/JB.182.11.3204-3209.2000.
9
The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities.
Proc Natl Acad Sci U S A. 2000 May 9;97(10):5528-33. doi: 10.1073/pnas.97.10.5528.
10
Mathematical modelling of metabolism.
Curr Opin Biotechnol. 2000 Apr;11(2):180-6. doi: 10.1016/s0958-1669(00)00079-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验