Suppr超能文献

将通路分析与通量平衡分析相结合用于代谢系统的综合研究。

Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.

作者信息

Schilling C H, Edwards J S, Letscher D, Palsson B Ø

机构信息

Department of Bioengineering, University of California, San Diego, MC 0412, La Jolla, California 92093-0412, USA.

出版信息

Biotechnol Bioeng. 2000;71(4):286-306.

Abstract

The elucidation of organism-scale metabolic networks necessitates the development of integrative methods to analyze and interpret the systemic properties of cellular metabolism. A shift in emphasis from single metabolic reactions to systemically defined pathways is one consequence of such an integrative analysis of metabolic systems. The constraints of systemic stoichiometry, and limited thermodynamics have led to the definition of the flux space within the context of convex analysis. The flux space of the metabolic system, containing all allowable flux distributions, is constrained to a convex polyhedral cone in a high-dimensional space. From metabolic pathway analysis, the edges of the high-dimensional flux cone are vectors that correspond to systemically defined "extreme pathways" spanning the capabilities of the system. The addition of maximum flux capacities of individual metabolic reactions serves to further constrain the flux space and has led to the development of flux balance analysis using linear optimization to calculate optimal flux distributions. Here we provide the precise theoretical connections between pathway analysis and flux balance analysis allowing for their combined application to study integrated metabolic function. Shifts in metabolic behavior are calculated using linear optimization and are then interpreted using the extreme pathways to demonstrate the concept of pathway utilization. Changes to the reaction network, such as the removal of a reaction, can lead to the generation of suboptimal phenotypes that can be directly attributed to the loss of pathway function and capabilities. Optimal growth phenotypes are calculated as a function of environmental variables, such as the availability of substrate and oxygen, leading to the definition of phenotypic phase planes. It is illustrated how optimality properties of the computed flux distributions can be interpreted in terms of the extreme pathways. Together these developments are applied to an example network and to core metabolism of Escherichia coli demonstrating the connections between the extreme pathways, optimal flux distributions, and phenotypic phase planes. The consequences of changing environmental and internal conditions of the network are examined for growth on glucose and succinate in the face of a variety of gene deletions. The convergence of the calculation of optimal phenotypes through linear programming and the definition of extreme pathways establishes a different perspective for the understanding of how a defined metabolic network is best used under different environmental and internal conditions or, in other words, a pathway basis for the interpretation of the metabolic reaction norm.

摘要

阐明生物体尺度的代谢网络需要开发综合方法来分析和解释细胞代谢的系统特性。从单个代谢反应到系统定义途径的重点转变是代谢系统这种综合分析的一个结果。系统化学计量学的限制以及有限的热力学导致了在凸分析背景下通量空间的定义。代谢系统的通量空间包含所有允许的通量分布,在高维空间中被限制为一个凸多面锥。从代谢途径分析来看,高维通量锥的边缘是与跨越系统能力的系统定义 “极端途径” 相对应的向量。单个代谢反应最大通量能力的加入进一步限制了通量空间,并导致了使用线性优化来计算最佳通量分布的通量平衡分析的发展。在这里,我们提供了途径分析和通量平衡分析之间精确的理论联系,以便它们能够联合应用于研究综合代谢功能。使用线性优化计算代谢行为的变化,然后使用极端途径进行解释,以证明途径利用的概念。反应网络的变化,如去除一个反应,可能导致产生次优表型,这可直接归因于途径功能和能力的丧失。最佳生长表型作为环境变量的函数来计算,如底物和氧气的可用性,从而导致表型相平面的定义。说明了如何根据极端途径来解释计算出的通量分布的最优性质。这些进展一起应用于一个示例网络和大肠杆菌的核心代谢,展示了极端途径、最佳通量分布和表型相平面之间的联系。在面对各种基因缺失的情况下,研究了网络环境和内部条件变化对葡萄糖和琥珀酸生长的影响。通过线性规划计算最佳表型与定义极端途径的收敛,为理解在不同环境和内部条件下如何最佳利用定义的代谢网络建立了一个不同的视角,或者换句话说,为解释代谢反应规范提供了一个途径基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验