Baram Tallie Z, Eghbal-Ahmadi Mariam, Bender Roland A
Departments of Pediatrics, Anatomy, Neurobiology and Neurology, University of California at Irvine, Irvine, CA 92697-4475, USA.
Prog Brain Res. 2002;135:365-75. doi: 10.1016/S0079-6123(02)35033-7.
Do seizures cause neuronal death? At least in the immature hippocampus, this may not be the critical question for determining the mechanisms of epileptogenesis. Neuronal injury and death have clearly been shown to occur in most epilepsy models in the mature brain, and are widely considered a prerequisite to seizure-induced epilepsy. In contrast, little neuronal death occurs after even a severe and prolonged seizure prior to the third postnatal week. However, seizures early in life, for example prolonged experimental febrile seizures, can profoundly and permanently change the hippocampal circuit in a pro-epileptogenic direction. These seizure-induced alterations of limbic excitability may require transient structural injury, but are mainly due to functional changes in expression of gene coding for specific receptors and channels, leading to altered functional properties of hippocampal neurons. Thus, in some pro-epileptogenic models in the developing brain, neither the death of neurons nor death-induced abnormalities of surviving neurons may underlie the formation of an epileptic circuit. Rather, findings in the experimental prolonged febrile seizure model suggest that persistent functional alterations of gene expression ('neuroplasticity') in diverse hippocampal neuronal populations may promote pro-epileptogenic processes induced by these seizures. These findings also suggest that during development, relatively short, intense bursts of neuronal activity may disrupt 'normal' programmed maturational processes to result in permanent, selective alterations of gene expression, with profound functional consequences. Therefore, determining the cascade of changes in the programmed expression of pertinent genes, including their temporal and cell-specific spatial profiles, may provide important information for understanding the process of transformation of an evolving, maturing hippocampal network into one which is hyperexcitable.
癫痫发作会导致神经元死亡吗?至少在未成熟的海马体中,这可能不是确定癫痫发生机制的关键问题。在成熟大脑的大多数癫痫模型中,神经元损伤和死亡已被明确证实会发生,并且被广泛认为是癫痫发作诱发癫痫的先决条件。相比之下,在出生后第三周之前,即使经历严重且持续时间长的癫痫发作,也很少有神经元死亡发生。然而,生命早期的癫痫发作,例如长时间的实验性高热惊厥,会以促癫痫发生的方向深刻且永久性地改变海马回路。这些癫痫发作诱导的边缘系统兴奋性改变可能需要短暂的结构性损伤,但主要是由于编码特定受体和通道的基因表达发生功能性变化,导致海马神经元的功能特性改变。因此,在发育中的大脑的一些促癫痫发生模型中,癫痫回路的形成可能既不是神经元死亡的结果,也不是存活神经元因死亡而导致的异常。相反,实验性长时间高热惊厥模型的研究结果表明,不同海马神经元群体中基因表达的持续功能性改变(“神经可塑性”)可能会促进这些癫痫发作诱发的促癫痫发生过程。这些研究结果还表明,在发育过程中,相对短暂、强烈的神经元活动爆发可能会扰乱“正常”的程序性成熟过程,导致基因表达发生永久性、选择性改变,并产生深远的功能后果。因此,确定相关基因程序性表达的变化级联,包括它们的时间和细胞特异性空间分布,可能为理解不断发展、成熟的海马网络转变为过度兴奋网络的过程提供重要信息。