Suppr超能文献

一种用于预测紧密堆积的跨膜α螺旋对构象的新型评分函数。

A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices.

作者信息

Fleishman Sarel J, Ben-Tal Nir

机构信息

Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel.

出版信息

J Mol Biol. 2002 Aug 9;321(2):363-78. doi: 10.1016/s0022-2836(02)00590-9.

Abstract

Pairs of helices in transmembrane (TM) proteins are often tightly packed. We present a scoring function and a computational methodology for predicting the tertiary fold of a pair of alpha-helices such that its chances of being tightly packed are maximized. Since the number of TM protein structures solved to date is small, it seems unlikely that a reliable scoring function derived statistically from the known set of TM protein structures will be available in the near future. We therefore constructed a scoring function based on the qualitative insights gained in the past two decades from the solved structures of TM and soluble proteins. In brief, we reward the formation of contacts between small amino acid residues such as Gly, Cys, and Ser, that are known to promote dimerization of helices, and penalize the burial of large amino acid residues such as Arg and Trp. As a case study, we show that our method predicts the native structure of the TM homodimer glycophorin A (GpA) to be, in essence, at the global score optimum. In addition, by correlating our results with empirical point mutations on this homodimer, we demonstrate that our method can be a helpful adjunct to mutation analysis. We present a data set of canonical alpha-helices from the solved structures of TM proteins and provide a set of programs for analyzing it (http://ashtoret.tau.ac.il/~sarel). From this data set we derived 11 helix pairs, and conducted searches around their native states as a further test of our method. Approximately 73% of our predictions showed a reasonable fit (RMS deviation <2A) with the native structures compared to the success rate of 8% expected by chance. The search method we employ is less effective for helix pairs that are connected via short loops (<20 amino acid residues), indicating that short loops may play an important role in determining the conformation of alpha-helices in TM proteins.

摘要

跨膜(TM)蛋白中的螺旋对通常紧密堆积。我们提出了一种评分函数和一种计算方法,用于预测一对α-螺旋的三级折叠,以使它们紧密堆积的可能性最大化。由于迄今为止解析出的TM蛋白结构数量较少,近期似乎不太可能从已知的TM蛋白结构集中统计得出可靠的评分函数。因此,我们基于过去二十年从TM蛋白和可溶性蛋白的解析结构中获得的定性见解构建了一个评分函数。简而言之,我们奖励已知能促进螺旋二聚化的小氨基酸残基(如甘氨酸、半胱氨酸和丝氨酸)之间形成的接触,并惩罚大氨基酸残基(如精氨酸和色氨酸)的埋藏。作为一个案例研究,我们表明我们的方法预测TM同二聚体血型糖蛋白A(GpA)的天然结构在本质上处于全局得分最优。此外,通过将我们的结果与该同二聚体上的经验性点突变相关联,我们证明我们的方法可以成为突变分析的有用辅助手段。我们展示了一个来自已解析TM蛋白结构的典型α-螺旋数据集,并提供了一组用于分析它的程序(http://ashtoret.tau.ac.il/~sarel)。从这个数据集中我们得出了11对螺旋,并围绕它们的天然状态进行搜索,作为对我们方法的进一步测试。与偶然预期的8%成功率相比,我们大约73%的预测与天然结构显示出合理的契合度(均方根偏差<2埃)。我们采用的搜索方法对于通过短环(<20个氨基酸残基)连接的螺旋对效果较差,这表明短环可能在确定TM蛋白中α-螺旋的构象方面发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验