Suppr超能文献

跨膜α-螺旋二聚体的分子动力学模拟。

Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.

机构信息

Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

出版信息

Acc Chem Res. 2010 Mar 16;43(3):388-96. doi: 10.1021/ar900211k.

Abstract

Membrane proteins account for nearly a quarter of all genes, but their structure and function remain incompletely understood. Most membrane proteins have transmembrane (TM) domains made up of bundles of hydrophobic alpha-helices. The lateral association of TM helices within the lipid bilayer is a key stage in the folding of membrane proteins. It may also play a role in signaling across cell membranes. Dimerization of TM helices is a simple example of such lateral association. Molecular dynamics (MD) simulations have been used for over a decade to study membrane proteins in a lipid bilayer environment. However, direct atomistic (AT) MD simulation of self-assembly of a TM helix bundle remains challenging. AT-MD may be complemented by coarse-grained (CG) simulations, in which small numbers of atoms are grouped together into particles. In this Account, we demonstrate how CG-MD may be used to simulate formation of dimers of TM helices. We also show how a serial combination of CG and AT simulation provides a multiscale approach for generating and refining models of TM helix dimers. The glycophorin A (GpA) TM helix dimer represents a paradigm for helix-helix packing, mediated by a GxxxG sequence motif. It is well characterized experimentally and so is a good test case for evaluating computational methods. CG-MD simulations in which two separate TM helices are inserted in a lipid bilayer result in spontaneous formation of a right-handed GpA dimer, in agreement with NMR structures. CG-MD models were evaluated via comparison with data on destabilizing mutants of GpA. Such mutants increased the conformational flexibility and the dissociation constants of helix dimers. GpA dimers have been used to evaluate a multiscale approach: A CG model is converted to an AT model, which is used as the basis of an AT-MD simulation. Comparison of three AT-MD simulations of GpA, one starting from a CG model and two starting from NMR structures, leads to convergence to a common refined structure for the dimer. CG-MD self-assembly has also been used to model dimerization of the TM domain of the syndecan-2 receptor protein. This TM helix contains a GxxxG motif, which mediates right-handed helix packing comparable to that of the GxxxG motif in GpA. The multiscale approach has been applied to a more complex system, the heterodimeric alphaIIb/beta3 integrin TM helix dimer. In CG-MD, both right-handed and left-handed structures were formed. Subsequent AT-MD simulations showed that the right-handed structure was more stable, yielding a dimer in which the GxxxG motif of the alphaIIb TM helix packed against a hydrophobic surface of the beta3 helix in a manner comparable to that observed in two recent NMR studies. This work demonstrates that the multiscale simulation approach can be used to model simple membrane proteins. The method may be applied to more complex proteins, such as the influenza M2 channel protein. Future refinements, such as extending the multiscale approach to a wider range of scales (from CG through QM/MM simulations, for example), will expand the range of applications and the accuracy of the resultant models.

摘要

膜蛋白约占所有基因的四分之一,但它们的结构和功能仍不完全了解。大多数膜蛋白都有由疏水α-螺旋组成的跨膜 (TM) 结构域。TM 螺旋在脂质双层中的横向缔合是膜蛋白折叠的关键阶段。它也可能在细胞间信号传递中发挥作用。TM 螺旋的二聚化就是这种横向缔合的一个简单例子。分子动力学 (MD) 模拟已经使用了十多年来研究脂质双层环境中的膜蛋白。然而,直接原子 (AT) MD 模拟 TM 螺旋束的自组装仍然具有挑战性。AT-MD 可以通过粗粒化 (CG) 模拟来补充,其中少量原子被组合成粒子。在本报告中,我们展示了 CG-MD 如何用于模拟 TM 螺旋束的二聚体形成。我们还展示了如何通过 CG 和 AT 模拟的连续组合提供一种用于生成和细化 TM 螺旋二聚体模型的多尺度方法。糖蛋白 A (GpA) TM 螺旋二聚体代表了一种由 GxxxG 序列基序介导的螺旋-螺旋包装的范例。它在实验上得到了很好的表征,因此是评估计算方法的一个很好的测试案例。在脂质双层中插入两个单独的 TM 螺旋的 CG-MD 模拟导致右手 GpA 二聚体的自发形成,这与 NMR 结构一致。通过与 GpA 不稳定突变体的数据进行比较来评估 CG-MD 模型。这种突变体增加了螺旋二聚体的构象灵活性和离解常数。GpA 二聚体已被用于评估多尺度方法:CG 模型转换为 AT 模型,该模型用作 AT-MD 模拟的基础。对 GpA 的三个 AT-MD 模拟的比较,其中一个从 CG 模型开始,两个从 NMR 结构开始,导致二聚体收敛到一个共同的细化结构。CG-MD 自组装也被用于模拟 syndecan-2 受体蛋白的 TM 结构域的二聚化。该 TM 螺旋包含一个 GxxxG 基序,它介导右手螺旋包装,类似于 GpA 中的 GxxxG 基序。多尺度方法已应用于更复杂的系统,即异二聚体 αIIb/β3 整合素 TM 螺旋二聚体。在 CG-MD 中,形成了右手和左手结构。随后的 AT-MD 模拟表明,右手结构更稳定,形成的二聚体中,αIIb TM 螺旋的 GxxxG 基序与β3 螺旋的疏水面以与最近两项 NMR 研究中观察到的方式相互作用。这项工作表明,多尺度模拟方法可用于模拟简单的膜蛋白。该方法可应用于更复杂的蛋白质,例如流感 M2 通道蛋白。未来的改进,例如将多尺度方法扩展到更广泛的范围(例如,从 CG 到 QM/MM 模拟),将扩展应用范围并提高所得模型的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验