Suppr超能文献

控制刚地弓形虫急性毒力的数量性状基因座的鉴定。

Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii.

作者信息

Su Chunlei, Howe Daniel K, Dubey J P, Ajioka James W, Sibley L David

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10753-8. doi: 10.1073/pnas.172117099. Epub 2002 Jul 29.

Abstract

Strains of Toxoplasma gondii can be grouped into three predominant clonal lineages with members of the type I group being uniformly lethal in mice. To elucidate the basis of this extreme virulence, a genetic cross was performed between a highly virulent type I strain (GT-1) and a less-virulent type III strain (CTG), and the phenotypes of resulting progeny were analyzed by genetic linkage mapping. Analysis of independent recombinant progeny identified several quantitative trait loci that contributed to acute virulence. A major quantitative trait locus located on chromosome VII accounted for approximately 50% of the virulence phenotype, whereas a minor locus on chromosome IV, linked to the ROP1 gene, accounted for approximately 10%. These loci are conserved in other type I strains, indicating that acute virulence is controlled by discrete genes common to the type I lineage.

摘要

刚地弓形虫菌株可分为三个主要的克隆谱系,其中I型菌株的成员对小鼠具有一致的致死性。为了阐明这种极端毒力的基础,在高毒力的I型菌株(GT-1)和低毒力的III型菌株(CTG)之间进行了遗传杂交,并通过遗传连锁图谱分析了所得后代的表型。对独立重组后代的分析确定了几个导致急性毒力的数量性状基因座。位于VII号染色体上的一个主要数量性状基因座约占毒力表型的50%,而与ROP1基因连锁的IV号染色体上的一个次要基因座约占10%。这些基因座在其他I型菌株中是保守的,表明急性毒力由I型谱系共有的离散基因控制。

相似文献

1
Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii.
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10753-8. doi: 10.1073/pnas.172117099. Epub 2002 Jul 29.
2
Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii.
Infect Immun. 1996 Dec;64(12):5193-8. doi: 10.1128/iai.64.12.5193-5198.1996.
3
Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9631-6. doi: 10.1073/pnas.1015338108. Epub 2011 May 17.
4
Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii.
Philos Trans R Soc Lond B Biol Sci. 2002 Jan 29;357(1417):81-8. doi: 10.1098/rstb.2001.1017.
6
A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii.
Science. 2006 Dec 15;314(5806):1776-80. doi: 10.1126/science.1133643.
7
Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii.
PLoS Genet. 2015 Aug 20;11(8):e1005434. doi: 10.1371/journal.pgen.1005434. eCollection 2015 Aug.
9
Population structure and mouse-virulence of Toxoplasma gondii in Brazil.
Int J Parasitol. 2008 Apr;38(5):561-9. doi: 10.1016/j.ijpara.2007.09.004. Epub 2007 Sep 21.

引用本文的文献

1
Isolation, genotyping and phenotyping in Europe - A critical perspective.
Food Waterborne Parasitol. 2025 Jul 25;40:e00279. doi: 10.1016/j.fawpar.2025.e00279. eCollection 2025 Sep.
2
Molecular detection and characterisation of in eastern barred bandicoots () in Victoria, Australia.
Int J Parasitol Parasites Wildl. 2025 Apr 11;27:101071. doi: 10.1016/j.ijppaw.2025.101071. eCollection 2025 Aug.
3
GRA12 is a common virulence factor across Toxoplasma gondii strains and mouse subspecies.
Nat Commun. 2025 Apr 16;16(1):3570. doi: 10.1038/s41467-025-58876-2.
5
Toxoplasma gondii infection supports the infiltration of T cells into brain tumors.
J Neuroimmunol. 2024 Aug 15;393:578402. doi: 10.1016/j.jneuroim.2024.578402. Epub 2024 Jul 8.
6
Early immune response to lineage III isolates of different virulence phenotype.
Front Cell Infect Microbiol. 2024 Jun 7;14:1414067. doi: 10.3389/fcimb.2024.1414067. eCollection 2024.
7
Effective factors in the pathogenesis of .
Heliyon. 2024 May 19;10(10):e31558. doi: 10.1016/j.heliyon.2024.e31558. eCollection 2024 May 30.
8
Humane Endpoints in Swiss Webster Mice Infected with RH Strain.
Animals (Basel). 2024 Apr 29;14(9):1326. doi: 10.3390/ani14091326.
9
Me49 and NED strains arrest host cell cycle progression and alter chromosome segregation in a strain-independent manner.
Front Microbiol. 2024 Feb 21;15:1336267. doi: 10.3389/fmicb.2024.1336267. eCollection 2024.
10
Susceptibility of to autophagy in human cells relies on multiple interacting parasite loci.
mBio. 2024 Jan 16;15(1):e0259523. doi: 10.1128/mbio.02595-23. Epub 2023 Dec 14.

本文引用的文献

1
High-resolution typing of Toxoplasma gondii using microsatellite loci.
J Parasitol. 2001 Dec;87(6):1472-5. doi: 10.1645/0022-3395(2001)087[1472:HRTOTG]2.0.CO;2.
2
SLC11A1 (formerly NRAMP1) and disease resistance.
Cell Microbiol. 2001 Dec;3(12):773-84. doi: 10.1046/j.1462-5822.2001.00150.x.
3
Map Manager QTX, cross-platform software for genetic mapping.
Mamm Genome. 2001 Dec;12(12):930-2. doi: 10.1007/s00335-001-1016-3.
4
Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines.
J Immunol. 2001 Oct 15;167(8):4574-84. doi: 10.4049/jimmunol.167.8.4574.
6
Unusual abundance of atypical strains associated with human ocular toxoplasmosis.
J Infect Dis. 2001 Sep 1;184(5):633-9. doi: 10.1086/322800. Epub 2001 Jul 24.
8
Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole.
EMBO J. 2001 Jun 15;20(12):3132-44. doi: 10.1093/emboj/20.12.3132.
10
A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella.
Genome Res. 2000 Oct;10(10):1587-93. doi: 10.1101/gr.149200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验