Suppr超能文献

刚地弓形虫核苷三磷酸水解酶I和II在小鼠急性毒力和免疫抑制中作用的功能分析

Functional Analysis of the Role of Toxoplasma gondii Nucleoside Triphosphate Hydrolases I and II in Acute Mouse Virulence and Immune Suppression.

作者信息

Olias Philipp, Sibley L David

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

出版信息

Infect Immun. 2016 Jun 23;84(7):1994-2001. doi: 10.1128/IAI.00077-16. Print 2016 Jul.

Abstract

Bioluminescent reporter assays have been widely used to study the effect of Toxoplasma gondii on host gene expression. In the present study, we extend these studies by engineering novel reporter cell lines containing a gamma-activated sequence (GAS) element driving firefly luciferase (FLUC). In RAW264.7 macrophages, T. gondii type I strain (GT1) infection blocked interferon gamma (IFN-γ)-induced FLUC activity to a significantly greater extent than infection by type II (ME49) and type III (CTG) strains. Quantitative trait locus (QTL) analysis of progeny from a prior genetic cross identified a genomic region on chromosome XII that correlated with the observed strain-dependent phenotype. This QTL region contains two isoforms of the T. gondii enzyme nucleoside triphosphate hydrolase (NTPase) that were the prime candidates for mediating the observed strain-specific effect. Using reverse genetic analysis we show that deletion of NTPase I from a type I strain (RH) background restored the higher luciferase levels seen in the type II (ME49) strain. Rather than an effect on IFN-γ-dependent transcription, our data suggest that NTPase I was responsible for the strain-dependent difference in FLUC activity due to hydrolysis of ATP. We further show that NTPases I and II were not essential for tachyzoite growth in vitro or virulence in mice. Our study reveals that although T. gondii NTPases are not essential for immune evasion, they can affect ATP-dependent reporters. Importantly, this limitation was overcome using an ATP-independent Gaussia luciferase, which provides a more appropriate reporter for use with T. gondii infection studies.

摘要

生物发光报告基因检测已被广泛用于研究弓形虫对宿主基因表达的影响。在本研究中,我们通过构建新型报告细胞系来扩展这些研究,该细胞系含有驱动萤火虫荧光素酶(FLUC)的γ-激活序列(GAS)元件。在RAW264.7巨噬细胞中,弓形虫I型菌株(GT1)感染比II型(ME49)和III型(CTG)菌株感染更显著地阻断了干扰素γ(IFN-γ)诱导的FLUC活性。对先前遗传杂交后代的数量性状位点(QTL)分析确定了XII号染色体上的一个基因组区域,该区域与观察到的菌株依赖性表型相关。这个QTL区域包含弓形虫核苷三磷酸水解酶(NTPase)的两种同工型,它们是介导观察到的菌株特异性效应的主要候选者。使用反向遗传分析,我们表明从I型菌株(RH)背景中缺失NTPase I可恢复II型(ME49)菌株中较高的荧光素酶水平。我们的数据表明,NTPase I不是由于对IFN-γ依赖性转录的影响,而是由于ATP水解导致FLUC活性的菌株依赖性差异。我们进一步表明,NTPases I和II对于速殖子在体外生长或在小鼠中的毒力不是必需的。我们的研究表明,虽然弓形虫NTPases对于免疫逃避不是必需的,但它们可以影响依赖ATP的报告基因。重要的是,使用不依赖ATP的高斯荧光素酶克服了这一限制,该酶为弓形虫感染研究提供了更合适的报告基因。

相似文献

2
Monoclonal antibodies against nucleoside triphosphate hydrolase-II can reduce the replication of Toxoplasma gondii.
Parasitol Int. 2010 Jun;59(2):141-6. doi: 10.1016/j.parint.2009.12.007. Epub 2010 Jan 6.
4
Kinetics of the nucleoside triphosphate hydrolase of Toxoplasma gondii in mice with acute and chronic toxoplasmosis.
Ann Trop Med Parasitol. 2002 Jan;96(1):35-41. doi: 10.1179/000349802125000493.
6
The Toxoplasma gondii Rhoptry Kinome Is Essential for Chronic Infection.
mBio. 2016 May 10;7(3):e00193-16. doi: 10.1128/mBio.00193-16.
10
Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii.
PLoS Genet. 2015 Aug 20;11(8):e1005434. doi: 10.1371/journal.pgen.1005434. eCollection 2015 Aug.

引用本文的文献

1
Monoclonal antibodies: From magic bullet to precision weapon.
Mol Biomed. 2024 Oct 11;5(1):47. doi: 10.1186/s43556-024-00210-1.
2
Variation in CD8 T cell IFNγ differentiation to strains of is characterized by small effect QTLs with contribution from ROP16.
Front Cell Infect Microbiol. 2023 May 23;13:1130965. doi: 10.3389/fcimb.2023.1130965. eCollection 2023.
3
The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages.
Cell Host Microbe. 2022 Nov 9;30(11):1570-1588.e7. doi: 10.1016/j.chom.2022.10.001. Epub 2022 Oct 28.
5
Monoclonal Antibodies for Protozoan Infections: A Future Reality or a Utopic Idea?
Front Med (Lausanne). 2021 Oct 12;8:745665. doi: 10.3389/fmed.2021.745665. eCollection 2021.
7
effector TgIST blocks type I interferon signaling to promote infection.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17480-17491. doi: 10.1073/pnas.1904637116. Epub 2019 Aug 14.
8
Effector variation at tandem gene arrays in tissue-dwelling coccidia: who needs antigenic variation anyway?
Curr Opin Microbiol. 2018 Dec;46:86-92. doi: 10.1016/j.mib.2018.09.001. Epub 2018 Oct 11.
10
The Expressed MicroRNA-mRNA Interactions of .
Front Microbiol. 2018 Jan 4;8:2630. doi: 10.3389/fmicb.2017.02630. eCollection 2017.

本文引用的文献

2
Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
mBio. 2014 May 13;5(3):e01114-14. doi: 10.1128/mBio.01114-14.
3
Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1126-31. doi: 10.1073/pnas.1313501111. Epub 2014 Jan 3.
5
Modulation of innate immunity by Toxoplasma gondii virulence effectors.
Nat Rev Microbiol. 2012 Nov;10(11):766-78. doi: 10.1038/nrmicro2858.
7
Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9631-6. doi: 10.1073/pnas.1015338108. Epub 2011 May 17.
8
A novel multifunctional oligonucleotide microarray for Toxoplasma gondii.
BMC Genomics. 2010 Oct 25;11:603. doi: 10.1186/1471-2164-11-603.
10
Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.
Trends Parasitol. 2010 Apr;26(4):190-6. doi: 10.1016/j.pt.2010.01.009. Epub 2010 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验