From the standpoint of monomer-dimer equilibrium of hog kidney D-amino acid oxidase [EC 1.4.3.3] and the interaction between the enzyme and small molecules, the effect of pH on the binding of p-aminobenzoate to the monomer and dimer of the enzyme was studied by kinetic methods and spectrophotometric titration. 2. The maximum binding number of p-aminobenzoate to the dimer is two molecules, and there is no interaction between the two active sites of the dimer (i.e., no cooperativity) over the range of pH from 6.5 to 10. 3. The affinity of the dimer for p-aminobenzoate is several times higher than that of the monomer at pH 6.5-10, and consequently p-aminobenzoate induces dimerization in the equilibrium state of D-amino acid oxidase. The interaction energy of two subunits of the dimer is stabilized by the binding of p-aminobenzoate by 1-2 kcal/mole over the pH range studied. 4. The binding sites of the quasi-substrate, p-aminobenzoate, in the dimer and the intersubunit binding site of the dimer are clearly different, because p-aminobenzoate induces dimerization of the enzyme. 5. The pK values of ionizing groups in the free monomer and the free dimer which participate in the binding of the competitive inhibitor, p-aminobenzoate, are approximately the same, 8.7, as determined from the pH dependence of the affinity of the inhibitor for the enzyme. Furthermore, no pK for the enzyme-inhibitor complex in the pH range 6.5-10 was observed. 6. There is no interaction between the two ionizing groups of the dimer during protonation-deprotonation, because a theoretical equation involving no cooperativity between the two ionizing groups in the dimer explains the results well.