Suppr超能文献

小电导钙激活钾通道激活门的定位

Localization of the activation gate for small conductance Ca2+-activated K+ channels.

作者信息

Bruening-Wright Andrew, Schumacher Maria A, Adelman John P, Maylie James

机构信息

Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97201, USA.

出版信息

J Neurosci. 2002 Aug 1;22(15):6499-506. doi: 10.1523/JNEUROSCI.22-15-06499.2002.

Abstract

Small conductance Ca2+-activated K+ (SK) channels open in response to increased cytosolic Ca2+ and contribute to the afterhyperpolarization in many excitable cell types. Opening of SK channels is initiated by Ca2+ binding to calmodulin that is bound to the C terminus of the channel. Based on structural information, a chemomechanical gating model has been proposed in which the chemical energy derived from Ca2+ binding is transduced into a mechanical force that restructures the protein to allow K+ ion conduction through the pore. However, the residues that comprise the physical gate of the SK channels have not been identified. In voltage-gated K+ (Kv) channels, access to the inner vestibule is controlled by a bundle crossing formed by the intracellular end of the sixth transmembrane domain (S6) of each of the four channel subunits. Probing SK channels with internally applied quaternary amines suggests that the inner vestibules of Kv and SK channels share structural similarity. Using substituted cysteine accessibility mutagenesis, the relatively large molecule [2-(trimethylammonium)] methanethiosulfonate accessed positions near the putative bundle crossing more rapidly in the open than the closed state but did not modify S6 positions closer to the selectivity filter. In contrast, the smaller compound, 2-(aminoethyl) methanethiosulfonate (MTSEA), modified a position predicted to lie in the lumen immediately intracellular to the selectivity filter equivalently in the open and closed states. The pore blocker tetrabutylammonium impeded MTSEA access to this position in both open and closed channels. The results suggest that the SK channel gate is not formed by the cytoplasmic end of S6 but resides deep in the channel pore in or near the selectivity filter.

摘要

小电导钙激活钾(SK)通道在胞质钙增加时开放,并在许多可兴奋细胞类型中对超极化后电位起作用。SK通道的开放由与通道C末端结合的钙调蛋白结合钙引发。基于结构信息,提出了一种化学机械门控模型,其中钙结合产生的化学能转化为一种机械力,使蛋白质重构以允许钾离子通过孔道传导。然而,构成SK通道物理门的残基尚未确定。在电压门控钾(Kv)通道中,通向内部前庭的通道由四个通道亚基各自的第六个跨膜结构域(S6)的细胞内末端形成的束状交叉控制。用内部施加的季胺探测SK通道表明,Kv和SK通道的内部前庭具有结构相似性。使用取代半胱氨酸可及性诱变,相对较大的分子[2 - (三甲基铵)]甲硫代磺酸盐在开放状态下比关闭状态下更快地到达假定的束状交叉附近的位置,但未修饰更靠近选择性过滤器的S6位置。相反,较小的化合物2 - (氨基乙基)甲硫代磺酸盐(MTSEA)在开放和关闭状态下等效地修饰了一个预计位于选择性过滤器细胞内紧邻的管腔中的位置。孔道阻滞剂四丁基铵在开放和关闭通道中均阻碍MTSEA进入该位置。结果表明,SK通道门不是由S6的胞质末端形成,而是位于通道孔深处的选择性过滤器内或附近。

相似文献

1
Localization of the activation gate for small conductance Ca2+-activated K+ channels.
J Neurosci. 2002 Aug 1;22(15):6499-506. doi: 10.1523/JNEUROSCI.22-15-06499.2002.
2
Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels.
J Gen Physiol. 2007 Dec;130(6):601-10. doi: 10.1085/jgp.200709828. Epub 2007 Nov 12.
4
Molecular mechanisms of Slo2 K channel closure.
J Physiol. 2017 Apr 1;595(7):2321-2336. doi: 10.1113/JP273225. Epub 2016 Dec 2.
5
Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
J Gen Physiol. 2005 Sep;126(3):193-204. doi: 10.1085/jgp.200509292.
6
Structural basis of ion permeation gating in Slo2.1 K+ channels.
J Gen Physiol. 2013 Nov;142(5):523-42. doi: 10.1085/jgp.201311064.
7
Small conductance Ca2+-activated K+ channels and calmodulin.
J Physiol. 2004 Jan 15;554(Pt 2):255-61. doi: 10.1113/jphysiol.2003.049072. Epub 2003 Sep 18.
8
Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels.
Neuron. 2000 Dec;28(3):899-909. doi: 10.1016/s0896-6273(00)00162-8.
9
Localization of the activation gate of a voltage-gated Ca2+ channel.
J Gen Physiol. 2005 Sep;126(3):205-12. doi: 10.1085/jgp.200509293.
10
Evidence for a centrally located gate in the pore of a serotonin-gated ion channel.
J Neurosci. 2002 Mar 1;22(5):1629-39. doi: 10.1523/JNEUROSCI.22-05-01629.2002.

引用本文的文献

1
Redox Regulation of K Channel: Role of Thioredoxin.
Antioxid Redox Signal. 2024 Nov;41(13-15):818-844. doi: 10.1089/ars.2023.0416. Epub 2024 Aug 28.
2
Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:219-240. doi: 10.1146/annurev-pharmtox-010919-023420. Epub 2019 Jul 23.
3
Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures.
Science. 2018 May 4;360(6388):508-513. doi: 10.1126/science.aas9466.
4
Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel.
J Gen Physiol. 2017 Nov 6;149(11):985-1007. doi: 10.1085/jgp.201711845. Epub 2017 Oct 12.
7
Identity and function of a cardiac mitochondrial small conductance Ca-activated K channel splice variant.
Biochim Biophys Acta Bioenerg. 2017 Jun;1858(6):442-458. doi: 10.1016/j.bbabio.2017.03.005. Epub 2017 Mar 22.
8
Principles of Ocular Pharmacology.
Handb Exp Pharmacol. 2017;242:3-30. doi: 10.1007/164_2016_25.
9
Pore size matters for potassium channel conductance.
J Gen Physiol. 2016 Oct;148(4):277-91. doi: 10.1085/jgp.201611625. Epub 2016 Sep 12.
10
Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating.
Cold Spring Harb Perspect Biol. 2016 May 2;8(5):a029231. doi: 10.1101/cshperspect.a029231.

本文引用的文献

1
Tight steric closure at the intracellular activation gate of a voltage-gated K(+) channel.
Neuron. 2001 Nov 20;32(4):649-56. doi: 10.1016/s0896-6273(01)00487-1.
3
Structure of the KcsA channel intracellular gate in the open state.
Nat Struct Biol. 2001 Oct;8(10):883-7. doi: 10.1038/nsb1001-883.
4
Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore.
Nat Rev Neurosci. 2001 Sep;2(9):643-51. doi: 10.1038/35090015.
5
Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels.
Neuron. 2001 Jun;30(3):689-98. doi: 10.1016/s0896-6273(01)00324-5.
6
9
Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels.
Neuron. 2000 Dec;28(3):899-909. doi: 10.1016/s0896-6273(00)00162-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验