Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
CoMPLEX, University College London, London, United Kingdom.
J Biol Chem. 2020 Dec 4;295(49):16529-16544. doi: 10.1074/jbc.RA120.014061. Epub 2020 Sep 15.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane anion channel that plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrheas, whereas mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane. Recently, treatments with two drug classes targeting CFTR-one boosting ion-channel function (potentiators) and the other increasing plasma membrane density (correctors)-have provided significant health benefits to CF patients. Here, we present an image-based fluorescence assay that can rapidly and simultaneously estimate both CFTR ion-channel function and the protein's proximity to the membrane. We monitor F508del-CFTR, the most common CF-causing variant, and confirm rescue by low temperature, CFTR-targeting drugs and second-site revertant mutation R1070W. In addition, we characterize a panel of 62 CF-causing mutations. Our measurements correlate well with published data (electrophysiology and biochemistry), further confirming validity of the assay. Finally, we profile effects of acute treatment with approved potentiator drug VX-770 on the rare-mutation panel. Mapping the potentiation profile on CFTR structures raises mechanistic hypotheses on drug action, suggesting that VX-770 might allow an open-channel conformation with an alternative arrangement of domain interfaces. The assay is a valuable tool for investigation of CFTR molecular mechanisms, allowing accurate inferences on gating/permeation. In addition, by providing a two-dimensional characterization of the CFTR protein, it could better inform development of single-drug and precision therapies addressing the root cause of CF disease.
囊性纤维化跨膜电导调节因子(CFTR)是一种质膜阴离子通道,在控制跨上皮液流中起关键作用。过度激活会导致分泌性腹泻时的肠道液体流失,而 突变是囊性纤维化(CF)的基础。阴离子通透性既取决于 CFTR 通道的工作效率(渗透性/门控),也取决于质膜上存在的通道数量。最近,针对 CFTR 的两种药物类别治疗方法——一种是增强离子通道功能(增敏剂),另一种是增加质膜密度(校正剂)——为 CF 患者提供了显著的健康益处。在这里,我们提出了一种基于图像的荧光测定法,该方法可以快速且同时估计 CFTR 离子通道功能和该蛋白接近质膜的程度。我们监测最常见的 CF 致病变体 F508del-CFTR,并通过低温、靶向 CFTR 的药物和第二部位回复突变 R1070W 来确认其恢复。此外,我们还对 62 种 CF 致病突变进行了特征分析。我们的测量结果与已发表的数据(电生理学和生物化学)高度相关,进一步证实了该测定的有效性。最后,我们对已批准的增敏药物 VX-770 对罕见突变体进行了急性治疗的效果进行了分析。将增敏谱映射到 CFTR 结构上提出了药物作用的机制假说,表明 VX-770 可能允许具有替代结构域界面排列的开放通道构象。该测定是研究 CFTR 分子机制的有价值的工具,可对门控/渗透性进行准确推断。此外,通过提供 CFTR 蛋白的二维特征,它可以更好地为针对 CF 疾病根本原因的单药和精准治疗的开发提供信息。