Suppr超能文献

大鼠脊髓中通过阻断钠泵和突触抑制诱导的新型爆发的实验与建模研究

Experimental and modeling studies of novel bursts induced by blocking na(+) pump and synaptic inhibition in the rat spinal cord.

作者信息

Rozzo Aldo, Ballerini Laura, Abbate Gilda, Nistri Andrea

机构信息

Biophysics Sector, Italy.

出版信息

J Neurophysiol. 2002 Aug;88(2):676-91. doi: 10.1152/jn.2002.88.2.676.

Abstract

This study addressed some electrophysiological mechanisms enabling neonatal rat spinal networks in vitro to generate spontaneous rhythmicity. Networks, made up by excitatory connections only after block of GABAergic and glycinergic transmission, develop regular bursting (disinhibited bursts) suppressed by the Na(+) pump blocker strophanthidin. Thus the Na(+) pump is considered important to control bursts. This study, however, shows that, after about 1 h in strophanthidin solution, networks of the rat isolated spinal cord surprisingly resumed spontaneous bursting ("strophanthidin bursting"), which consisted of slow depolarizations with repeated oscillations. This pattern, recorded from lumbar ventral roots, was synchronous on both sides, of irregular periodicity, and lasted for > or =12 h. Assays of (86)Rb(+) uptake by spinal tissue confirmed Na(+) pump block by strophanthidin. The strophanthidin rhythm was abolished by glutamate receptor antagonists or tetrodotoxin, indicating its network origin. N-methyl-D-aspartate (NMDA), serotonin, or high K(+) could not accelerate it. The size of each burst was linearly related to the length of the preceding pause. Bursts could also be generated by dorsal root electrical stimulation and possessed similar dependence on the preceding pause. Conversely, disinhibited bursts could be evoked at short intervals from the preceding one unless repeated pulses were applied in close sequence. These data suggest that rhythmicity expressed by excitatory spinal networks could be controlled by Na(+) pump activity or slow synaptic depression. A model based on the differential time course of pump operation and synaptic depression could simulate disinhibited and strophanthidin bursting, indicating two fundamental, activity-dependent processes for regulating network discharge.

摘要

本研究探讨了一些电生理机制,这些机制使新生大鼠脊髓网络在体外能够产生自发节律性。仅在阻断γ-氨基丁酸能和甘氨酸能传递后由兴奋性连接组成的网络,会产生规则的爆发(去抑制性爆发),该爆发会被钠泵阻滞剂毒毛花苷抑制。因此,钠泵被认为对控制爆发很重要。然而,本研究表明,在毒毛花苷溶液中放置约1小时后,大鼠离体脊髓网络出人意料地恢复了自发爆发(“毒毛花苷爆发”),其由伴有重复振荡的缓慢去极化组成。从腰段腹根记录到的这种模式在两侧是同步的,具有不规则的周期性,并且持续≥12小时。脊髓组织对(86)Rb(+)摄取的测定证实了毒毛花苷对钠泵的阻断作用。毒毛花苷节律被谷氨酸受体拮抗剂或河豚毒素消除,表明其起源于网络。N-甲基-D-天冬氨酸(NMDA)、5-羟色胺或高钾不能加速它。每次爆发的大小与前一个间歇期的长度呈线性相关。背根电刺激也可产生爆发,且对前一个间歇期具有相似的依赖性。相反,除非紧密连续施加重复脉冲,否则去抑制性爆发可在前一个爆发后短时间间隔诱发。这些数据表明,兴奋性脊髓网络表达的节律性可能受钠泵活性或缓慢的突触抑制控制。一个基于泵操作和突触抑制的不同时间进程的模型可以模拟去抑制性和毒毛花苷爆发,表明存在两个调节网络放电的基本的、依赖活动的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验