Suppr超能文献

发育中神经网络活动普遍模式的机制。

Mechanism for the universal pattern of activity in developing neuronal networks.

作者信息

Tabak Joël, Mascagni Michael, Bertram Richard

机构信息

Dept. of Biological Science, BRF 206, Florida State Univ., Tallahassee, FL 32306, USA.

出版信息

J Neurophysiol. 2010 Apr;103(4):2208-21. doi: 10.1152/jn.00857.2009. Epub 2010 Feb 17.

Abstract

Spontaneous episodic activity is a fundamental mode of operation of developing networks. Surprisingly, the duration of an episode of activity correlates with the length of the silent interval that precedes it, but not with the interval that follows. Here we use a modeling approach to explain this characteristic, but thus far unexplained, feature of developing networks. Because the correlation pattern is observed in networks with different structures and components, a satisfactory model needs to generate the right pattern of activity regardless of the details of network architecture or individual cell properties. We thus developed simple models incorporating excitatory coupling between heterogeneous neurons and activity-dependent synaptic depression. These models robustly generated episodic activity with the correct correlation pattern. The correlation pattern resulted from episodes being triggered at random levels of recovery from depression while they terminated around the same level of depression. To explain this fundamental difference between episode onset and termination, we used a mean field model, where only average activity and average level of recovery from synaptic depression are considered. In this model, episode onset is highly sensitive to inputs. Thus noise resulting from random coincidences in the spike times of individual neurons led to the high variability at episode onset and to the observed correlation pattern. This work further shows that networks with widely different architectures, different cell types, and different functions all operate according to the same general mechanism early in their development.

摘要

自发阵发性活动是发育中神经网络的一种基本运作模式。令人惊讶的是,一阵活动的持续时间与之前的静息间隔长度相关,而与之后的间隔无关。在这里,我们使用一种建模方法来解释发育中神经网络的这一尚未得到解释的特征。由于在具有不同结构和成分的网络中都观察到了这种相关模式,一个令人满意的模型需要生成正确的活动模式,而不管网络架构的细节或单个细胞的特性如何。因此,我们开发了简单的模型,该模型纳入了异质神经元之间的兴奋性耦合以及活动依赖的突触抑制。这些模型稳健地生成了具有正确相关模式的阵发性活动。这种相关模式是由于阵发性活动在从抑制中恢复的随机水平上被触发,而在大致相同的抑制水平上终止。为了解释阵发性活动起始和终止之间的这种根本差异,我们使用了一个平均场模型,其中只考虑平均活动和从突触抑制中恢复的平均水平。在这个模型中,阵发性活动的起始对输入高度敏感。因此,单个神经元放电时间的随机巧合产生的噪声导致了阵发性活动起始时的高变异性以及观察到的相关模式。这项工作进一步表明,具有广泛不同架构、不同细胞类型和不同功能的网络在其发育早期都按照相同的一般机制运作。

相似文献

1
Mechanism for the universal pattern of activity in developing neuronal networks.
J Neurophysiol. 2010 Apr;103(4):2208-21. doi: 10.1152/jn.00857.2009. Epub 2010 Feb 17.
2
Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field.
J Comput Neurosci. 2008 Aug;25(1):39-63. doi: 10.1007/s10827-007-0064-4. Epub 2008 Mar 6.
3
Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.
J Neurosci. 2017 Apr 5;37(14):3972-3987. doi: 10.1523/JNEUROSCI.2552-16.2017. Epub 2017 Mar 14.
4
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
5
Mechanisms of spontaneous activity in developing spinal networks.
J Neurobiol. 1998 Oct;37(1):131-45. doi: 10.1002/(sici)1097-4695(199810)37:1<131::aid-neu10>3.0.co;2-h.
6
Synchronization-induced spike termination in networks of bistable neurons.
Neural Netw. 2019 Feb;110:131-140. doi: 10.1016/j.neunet.2018.11.007. Epub 2018 Nov 27.
7
Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression.
J Comput Neurosci. 2010 Apr;28(2):193-209. doi: 10.1007/s10827-009-0199-6. Epub 2009 Oct 29.
8
Synaptic plasticity: taming the beast.
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. doi: 10.1038/81453.
9
[Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
J Soc Biol. 2008;202(2):143-60. doi: 10.1051/jbio:2008018. Epub 2008 Jun 13.
10
Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9366-E9375. doi: 10.1073/pnas.1705841114. Epub 2017 Oct 17.

引用本文的文献

1
Population bursts in a modular neural network as a mechanism for synchronized activity in KNDy neurons.
PLoS Comput Biol. 2024 Jul 31;20(7):e1011820. doi: 10.1371/journal.pcbi.1011820. eCollection 2024 Jul.
2
Mitigating Computer Limitations in Replicating Numerical Simulations of a Neural Network Model With Hodgkin-Huxley-Type Neurons.
Front Neuroinform. 2022 May 12;16:874234. doi: 10.3389/fninf.2022.874234. eCollection 2022.
3
Adaptation of spontaneous activity in the developing visual cortex.
Elife. 2021 Mar 16;10:e61619. doi: 10.7554/eLife.61619.
4
The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems.
Front Comput Neurosci. 2017 Sep 29;11:88. doi: 10.3389/fncom.2017.00088. eCollection 2017.
5
Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.
J Neurosci. 2017 Apr 5;37(14):3972-3987. doi: 10.1523/JNEUROSCI.2552-16.2017. Epub 2017 Mar 14.
6
Implementing Signature Neural Networks with Spiking Neurons.
Front Comput Neurosci. 2016 Dec 20;10:132. doi: 10.3389/fncom.2016.00132. eCollection 2016.
7
Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
J Neurosci. 2016 Mar 30;36(13):3722-34. doi: 10.1523/JNEUROSCI.2511-15.2016.
9
Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.
Front Comput Neurosci. 2013 Apr 4;7:24. doi: 10.3389/fncom.2013.00024. eCollection 2013.
10
Bifurcations of emergent bursting in a neuronal network.
PLoS One. 2012;7(6):e38402. doi: 10.1371/journal.pone.0038402. Epub 2012 Jun 7.

本文引用的文献

1
Noise-induced transitions in slow wave neuronal dynamics.
J Comput Neurosci. 2010 Feb;28(1):1-17. doi: 10.1007/s10827-009-0178-y. Epub 2009 Aug 8.
2
Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2939-44. doi: 10.1073/pnas.0808776106. Epub 2009 Feb 5.
3
Nonperiodic synchronization in heterogeneous networks of spiking neurons.
J Neurosci. 2008 Aug 6;28(32):7968-78. doi: 10.1523/JNEUROSCI.0870-08.2008.
4
Emergent synchronous bursting of oxytocin neuronal network.
PLoS Comput Biol. 2008 Jul 18;4(7):e1000123. doi: 10.1371/journal.pcbi.1000123.
5
Mechanisms underlying development of visual maps and receptive fields.
Annu Rev Neurosci. 2008;31:479-509. doi: 10.1146/annurev.neuro.31.060407.125533.
6
Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation.
J Comput Neurosci. 2008 Oct;25(2):317-33. doi: 10.1007/s10827-008-0081-y. Epub 2008 Apr 22.
7
Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field.
J Comput Neurosci. 2008 Aug;25(1):39-63. doi: 10.1007/s10827-007-0064-4. Epub 2008 Mar 6.
8
Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions.
Brain Res Rev. 2008 Jan;57(1):77-85. doi: 10.1016/j.brainresrev.2007.06.021. Epub 2007 Aug 1.
9
Desynchronization of glutamate release prolongs synchronous CA3 network activity.
J Neurophysiol. 2007 May;97(5):3812-8. doi: 10.1152/jn.01310.2006. Epub 2007 Mar 7.
10
Electrical activity in early neuronal development.
Nature. 2006 Dec 7;444(7120):707-12. doi: 10.1038/nature05300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验