Mukhopadhyay Rita, Rosen Barry P, Phung L T, Silver Simon
Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
FEMS Microbiol Rev. 2002 Aug;26(3):311-25. doi: 10.1111/j.1574-6976.2002.tb00617.x.
Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life. In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic geocycle, where microbial metabolism and mobilization (or immobilization) are important processes. Recent progress in studies of the ars operon (conferring resistance to As(III) and As(V)) in many bacterial types (and related systems in Archaea and yeast) and new understanding of arsenite oxidation and arsenate reduction by respiratory-chain-linked enzyme complexes has been substantial. The DNA sequencing and protein crystal structures have established the convergent evolution of three classes of arsenate reductases (that is classes of arsenate reductases are not of common evolutionary origin). Proposed reaction mechanisms in each case involve three cysteine thiols and S-As bond intermediates, so convergent evolution to similar mechanisms has taken place.
自生命起源以来,砷化合物在环境中的含量一直接近有毒水平。作为回应,微生物进化出了抗砷机制以及将As(III)氧化为As(V)或将As(V)还原为As(III)的酶。有机砷化合物,例如甲基砷化合物,会形成和降解。存在一个全球砷地球化学循环,其中微生物代谢和迁移(或固定)是重要过程。在许多细菌类型(以及古菌和酵母中的相关系统)中,关于ars操纵子(赋予对As(III)和As(V)的抗性)的研究取得了显著进展,并且对呼吸链连接的酶复合物进行的亚砷酸盐氧化和砷酸盐还原有了新的认识。DNA测序和蛋白质晶体结构确定了三类砷酸盐还原酶的趋同进化(即砷酸盐还原酶的类别并非起源于共同的进化过程)。每种情况下提出的反应机制都涉及三个半胱氨酸硫醇和S-As键中间体,因此发生了向相似机制的趋同进化。