Suppr超能文献

微生物组在地表农业土壤中砷酸盐还原和砷甲基化的协同解毒机制中的作用。

The role of microbiomes in cooperative detoxification mechanisms of arsenate reduction and arsenic methylation in surface agricultural soil.

机构信息

Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.

Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

出版信息

PeerJ. 2024 Oct 30;12:e18383. doi: 10.7717/peerj.18383. eCollection 2024.

Abstract

Microbial arsenic (As) transformations play a vital role in both driving the global arsenic biogeochemical cycle and determining the mobility and toxicity of arsenic in soils. Due to the complexity of soils, variations in soil characteristics, and the presence and condition of overlying vegetation, soil microbiomes and their functional pathways vary from site to site. Consequently, key arsenic-transforming mechanisms in soil are not well characterized. This study utilized a combination of high-throughput amplicon sequencing and shotgun metagenomics to identify arsenic-transforming pathways in surface agricultural soils. The temporal and successional variations of the soil microbiome and arsenic-transforming bacteria in agricultural soils were examined during tropical monsoonal dry and wet seasons, with a six-month interval. Soil microbiomes of both dry and wet seasons were relatively consistent, particularly the relative abundance of , , and . Common bacterial taxa present at high abundance, and potentially capable of arsenic transformations, were , , and . The resulting shotgun metagenome indicated that among the four key arsenic-functional genes, the gene exhibited the highest relative abundance, followed by the , , and genes, in declining sequence. Gene sequencing data based on 16S rRNA predicted only the and genes. Overall, this study proposed that a cooperative mechanism involving detoxification through arsenate reduction and arsenic methylation was a key arsenic transformation in surface agricultural soils with low arsenic concentration (7.60 to 10.28 mg/kg). This study significantly advances our knowledge of arsenic-transforming mechanisms interconnected with microbial communities in agricultural soil, enhancing pollution control measures, mitigating risks, and promoting sustainable soil management practices.

摘要

微生物砷(As)转化在驱动全球砷生物地球化学循环和决定土壤中砷的迁移性和毒性方面发挥着至关重要的作用。由于土壤的复杂性、土壤特性的变化以及覆盖植被的存在和状况,土壤微生物组及其功能途径在不同地点有所不同。因此,土壤中关键的砷转化机制尚未得到很好的描述。本研究采用高通量扩增子测序和鸟枪法宏基因组学相结合的方法,鉴定了表层农业土壤中的砷转化途径。在热带季风干季和湿季期间,以六个月的间隔时间,研究了农业土壤中微生物组和砷转化细菌的时间和演替变化。干季和湿季的土壤微生物组相对一致,特别是 和 的相对丰度。高丰度且可能具有砷转化能力的常见细菌类群是 、 和 。所得的鸟枪法宏基因组表明,在四个关键砷功能基因中, 基因的相对丰度最高,其次是 、 、和 基因,依次递减。基于 16S rRNA 的基因测序数据仅预测了 基因和 基因。总的来说,本研究提出,一种涉及砷酸盐还原和砷甲基化解毒的协同机制,是低砷浓度(7.60 至 10.28mg/kg)表层农业土壤中砷转化的关键机制。本研究极大地提高了我们对与农业土壤微生物群落相互关联的砷转化机制的认识,加强了污染控制措施,降低了风险,并促进了可持续的土壤管理实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a13/11531259/1916c0b75b08/peerj-12-18383-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验