Bello Dhimiter, Virji M Abbas, Kalil Andrew J, Woskie Susan R
Department of Work Environment, University of Massachusetts, Lowell, USA.
Appl Occup Environ Hyg. 2002 Aug;17(8):580-90. doi: 10.1080/10473220290095853.
The classification of quartz as a group I human carcinogen by the International Agency for Research on Cancer (IARC) highlights the need to develop a method to assess quartz exposures in the thoracic and inhalable particle size fractions to supplement the current method for the respirable size fraction. Heavy and highway construction operations can produce high respirable quartz exposures, but inhalable and thoracic exposures have not previously been well characterized. These larger particle size fractions may well contribute to the elevated cancers of the buccal cavity, throat, and GI tract in occupational cohorts of construction workers. A description is provided of the application of FT-IR for quartz analysis of personal cascade impactor air samples collected from highway construction sites. Separate calibration curves were generated for each stage of the four-stage personal impactor by using the impactor to sample quartz dust (Min-U-Sil 5 and Min-U-Sil 30) in an aerosol-generating loop. In addition, three separate calibration curves were generated using filters spiked with bulk Min-U-Sil 5, Min-U-Sil 30, and SRM 1878a (a respirable standard from NIST). The results showed that bulk Min-U-Sil 5 and SRM 1878a calibrations were identical and accurately estimated the respirable quartz fraction. Bulk Min-U-Sil 30 underestimated quartz in stages 1, 2, and 3 by 46 percent, 38 percent, and 18 percent, respectively. Using a respirable standard (bulk Min-U-Sil 5 or SRM 1878a) to quantify the larger particle sizes underestimated quartz in stages 1, 2, and 3 by 73 percent, 72 percent, and 63 percent, respectively. Until a standard reference material for quartz is developed for the larger particle sizes, the method described here, with some modifications, can be used to provide estimates of these biologically relevant particle size fractions. The results of this study also reaffirmed the need to collect narrow ranges of particle size in order to minimize quantification errors, since the FT-IR and XRD instrumental response is particle size-dependent.
国际癌症研究机构(IARC)将石英归类为I类人类致癌物,这凸显了开发一种方法来评估胸腔和可吸入粒径范围内石英暴露量的必要性,以补充当前针对可吸入粒径范围的方法。重型和公路建设作业会产生高浓度的可吸入石英暴露,但此前可吸入和胸腔暴露情况尚未得到充分表征。这些较大粒径的颗粒物很可能是导致建筑工人职业队列中口腔、咽喉和胃肠道癌症发病率升高的原因。本文介绍了傅里叶变换红外光谱(FT-IR)在分析从公路施工现场采集的个人串联冲击器空气样本中的石英时的应用。通过使用冲击器在气溶胶生成回路中对石英粉尘(Min-U-Sil 5和Min-U-Sil 30)进行采样,为四阶段个人冲击器的每个阶段生成了单独的校准曲线。此外,使用添加了大量Min-U-Sil 5、Min-U-Sil 30和SRM 1878a(美国国家标准与技术研究院的一种可吸入标准物质)的滤膜生成了三条单独的校准曲线。结果表明,大量Min-U-Sil 5和SRM 1878a校准结果相同,并准确估计了可吸入石英含量。大量Min-U-Sil 30在第1、2和3阶段分别低估了46%、38%和18%的石英含量。使用可吸入标准物质(大量Min-U-Sil 5或SRM 1878a)对较大粒径进行定量时,第1、2和3阶段分别低估了73%、72%和63%的石英含量。在为较大粒径开发出石英标准参考物质之前,这里描述的方法经过一些修改后,可用于提供这些具有生物学相关性的粒径范围的估计值。这项研究的结果还再次强调了收集窄粒径范围样本以尽量减少定量误差的必要性,因为傅里叶变换红外光谱和X射线衍射仪器的响应取决于粒径。