Schnadt Joachim, Brühwiler Paul A, Patthey Luc, O'Shea James N, Södergren Sven, Odelius Michael, Ahuja Rajeev, Karis Olof, Bässler Margit, Persson Petter, Siegbahn Hans, Lunell S, Mårtensson Nils
Department of Physics, Uppsala University, Box 530, Uppsala University, Box 532, 75121 Uppsala, Sweden.
Nature. 2002 Aug 8;418(6898):620-3. doi: 10.1038/nature00952.
The ultrafast timescale of electron transfer processes is crucial to their role in many biological systems and technological devices. In dye-sensitized solar cells, the electron transfer from photo-excited dye molecules to nanostructured semiconductor substrates needs to be sufficiently fast to compete effectively against loss processes and thus achieve high solar energy conversion efficiencies. Time-resolved laser techniques indicate an upper limit of 20 to 100 femtoseconds for the time needed to inject an electron from a dye into a semiconductor, which corresponds to the timescale on which competing processes such as charge redistribution and intramolecular thermalization of excited states occur. Here we use resonant photoemission spectroscopy, which has previously been used to monitor electron transfer in simple systems with an order-of-magnitude improvement in time resolution, to show that electron transfer from an aromatic adsorbate to a TiO(2) semiconductor surface can occur in less than 3 fs. These results directly confirm that electronic coupling of the aromatic molecule to its substrate is sufficiently strong to suppress competing processes.
电子转移过程的超快时间尺度对于其在许多生物系统和技术设备中的作用至关重要。在染料敏化太阳能电池中,从光激发的染料分子到纳米结构半导体衬底的电子转移需要足够快,以便有效地与损失过程竞争,从而实现高太阳能转换效率。时间分辨激光技术表明,将电子从染料注入半导体所需的时间上限为20到100飞秒,这与诸如电荷重新分布和激发态分子内热弛豫等竞争过程发生的时间尺度相对应。在这里,我们使用共振光发射光谱法(该方法先前已用于监测简单系统中的电子转移,时间分辨率有一个数量级的提高)来表明,从芳香族吸附物到TiO₂半导体表面的电子转移可以在不到3飞秒的时间内发生。这些结果直接证实,芳香族分子与其衬底的电子耦合足够强,能够抑制竞争过程。