Kühn Danilo, Müller Moritz, Sorgenfrei Florian, Giangrisostomi Erika, Jay Raphael M, Ovsyannikov Ruslan, Mårtensson Nils, Sánchez-Portal Daniel, Föhlisch Alexander
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam, Germany.
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
Sci Rep. 2019 Jan 24;9(1):488. doi: 10.1038/s41598-018-36637-0.
For the layered transition metal dichalcogenide 1T-TaS, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS. The X-ray spectroscopic core-hole-clock method prepares selectively in- and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves.
对于层状过渡金属二硫属化物1T-TaS,我们通过独特的实验方法和密度泛函理论确定,1T-TaS中的超快电荷转移如何呈现各向同性的三维特征或各向异性的二维特征,这取决于1T-TaS电荷密度波相的可公度性。X射线光谱核心空穴时钟方法相对于1T-TaS平面选择性地制备面内和面外极化的硫3p轨道占据,并监测亚飞秒波包离域。尽管1T-TaS是典型的二维材料,但在相称电荷密度波相(CCDW)中发现了各向同性的三维电荷转移,这表明层间存在强耦合。相比之下,近相称相(NCDW)中发生各向异性的二维电荷转移。直接比较表明,理论显示CCDW相中的层间相互作用——而非层堆叠变化——导致各向同性的三维电荷转移。这大概是具有电荷密度波的二硫属化物的相变和定制特性的一般机制。