Suppr超能文献

Dissociation energies and charge distribution of the Co-NO bond for nitrosyl-alpha,beta,gamma,delta-tetraphenylporphinatocobalt(II) and nitrosyl-alpha,beta,gamma,delta-tetraphenylporphinatocobalt(III) in benzonitrile solution.

作者信息

Zhu Xiao-Qing, Li Qian, Hao Wei-Fang, Cheng Jin-Pei

机构信息

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

出版信息

J Am Chem Soc. 2002 Aug 21;124(33):9887-93. doi: 10.1021/ja0201956.

Abstract

The first two series of Co-NO bond dissociation enthalpies in benzonitrile solution were determined for 12 cobalt(II) nitrosyl porphyrins and for 12 cobalt(III) nitrosyl porphyrins by titration calorimetry with suitable thermodynamic cycles. The results display that the energy scales of the heterolytic Co(III)-NO bond dissociation, the homolytic Co(III)-NO bond dissociation, and the homolytic Co(II)-NO bond dissociation are 14.7-23.2, 15.1-17.5, and 20.8-24.6 kcal/mol in benzonitrile solution, respectively, which not only indicates that the thermodynamic stability of cobalt(II) nitrosyl porphyrins is larger than that of the corresponding cobalt(III) nitrosyl porphyrins for homolysis in benzonitrile solution but also suggests that both cobalt(III) nitrosyl porphyrins and cobalt(II) nitrosyl porphyrins are excellent NO donors, and in addition, cobalt(III) nitrosyl porphyrins are also excellent NO(+) contributors. Hammett-type linear free energy analyses suggest that the nitrosyl group carries negative charges of 0.49 +/- 0.06 and 0.27 +/- 0.04 in T(G)PPCo(II)NO and in T(G)PPCo(III)NO, respectively, which indicates that nitric oxide is an electron-withdrawing group both in T(G)PPCo(II)NO and in T(G)PPCo(III)NO, behaving in a manner similar to Lewis acids rather than to Lewis bases. The energetic and structural information disclosed in the present work is believed to furnish hints to the understanding of cobalt nitrosyl porphyrins' biological functions in vivo.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验