Suppr超能文献

Effects of diabetes and evening primrose oil treatment on responses of aorta, corpus cavernosum and mesenteric vasculature in rats.

作者信息

Jack Alison M, Keegan Alan, Cotter Mary A, Cameron Norman E

机构信息

Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.

出版信息

Life Sci. 2002 Sep 6;71(16):1863-77. doi: 10.1016/s0024-3205(02)01912-4.

Abstract

Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验