Suppr超能文献

卡里林双同源鸟嘌呤核苷酸交换因子1结构域通过RhoG介导的机制启动新的轴突生长。

Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms.

作者信息

May Victor, Schiller Martin R, Eipper Betty A, Mains Richard E

机构信息

Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05404, USA.

出版信息

J Neurosci. 2002 Aug 15;22(16):6980-90. doi: 10.1523/JNEUROSCI.22-16-06980.2002.

Abstract

The large multidomain Kalirin and Trio proteins containing dual Rho GTPase guanine nucleotide exchange factor (GEF) domains have been implicated in the regulation of neuronal fiber extension and pathfinding during development. In mammals, Kalirin is expressed predominantly in the nervous system, whereas Trio, broadly expressed throughout the body, is expressed at a lower level in the nervous system. To evaluate the role of Kalirin in fiber initiation and outgrowth, we microinjected cultured sympathetic neurons with vectors encoding Kalirin or with Kalirin antisense oligonucleotides, and we assessed neuronal fiber growth in a serum-free, satellite cell-free environment. Kalirin antisense oligonucleotides blocked the continued extension of preexisting axons. Kalirin overexpression induced the prolific sprouting of new axonal fibers that grew at the normal rate; the activity of Kalirin was entirely dependent on the activity of the first GEF domain. KalGEF1-induced sprouting of new fibers from lamellipodial structures was accompanied by extensive actin cytoskeleton reorganization. The kalGEF1 phenotype was mimicked by constitutively active RhoG and was blocked by RhoG inhibitors. Constitutively active Rac1, RhoA, and Cdc42 were unable to initiate new axons, whereas dominant-negative Rac1, RhoA, and Cdc42 failed to block axon sprouting. Thus Kalirin, acting via RhoG in a novel manner, plays a central role in establishing the morphological phenotypic diversity that is essential to the connectivity of the developing nervous system.

摘要

包含双Rho GTP酶鸟嘌呤核苷酸交换因子(GEF)结构域的大型多结构域Kalirin和Trio蛋白,已被证明在发育过程中对神经元纤维延伸和路径寻找的调节起作用。在哺乳动物中,Kalirin主要在神经系统中表达,而广泛表达于全身的Trio在神经系统中的表达水平较低。为了评估Kalirin在纤维起始和生长中的作用,我们向培养的交感神经元显微注射编码Kalirin的载体或Kalirin反义寡核苷酸,并在无血清、无卫星细胞的环境中评估神经元纤维的生长。Kalirin反义寡核苷酸阻断了既有轴突的持续延伸。Kalirin的过表达诱导了以正常速度生长的新轴突纤维的大量萌发;Kalirin的活性完全依赖于第一个GEF结构域的活性。KalGEF1诱导的新纤维从片状伪足结构中萌发,伴随着广泛的肌动蛋白细胞骨架重组。组成型活性RhoG模拟了kalGEF1的表型,并被RhoG抑制剂阻断。组成型活性Rac1、RhoA和Cdc42无法启动新的轴突,而显性负性Rac1、RhoA和Cdc42未能阻断轴突发芽。因此,Kalirin通过RhoG以一种新的方式发挥作用,在建立对发育中的神经系统连接至关重要的形态表型多样性方面发挥核心作用。

相似文献

5
Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant.
J Biol Chem. 2004 Jan 30;279(5):3777-86. doi: 10.1074/jbc.M308282200. Epub 2003 Nov 3.
6
Genomic organization and differential expression of Kalirin isoforms.
Gene. 2002 Feb 6;284(1-2):41-51. doi: 10.1016/s0378-1119(02)00386-4.
7
Induction of lamellipodia by Kalirin does not require its guanine nucleotide exchange factor activity.
Exp Cell Res. 2005 Jul 15;307(2):402-17. doi: 10.1016/j.yexcr.2005.03.024. Epub 2005 Apr 21.
9
RhoG signals in parallel with Rac1 and Cdc42.
J Biol Chem. 2002 Dec 6;277(49):47810-7. doi: 10.1074/jbc.M203816200. Epub 2002 Oct 9.
10
TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG.
J Cell Sci. 2000 Feb;113 ( Pt 4):729-39. doi: 10.1242/jcs.113.4.729.

引用本文的文献

2
Identification and characterization of human KALRN mRNA and Kalirin protein isoforms.
Cereb Cortex. 2024 Dec 3;34(12). doi: 10.1093/cercor/bhae470.
3
Kalirin as a Novel Treatment Target for Cognitive Dysfunction in Schizophrenia.
CNS Drugs. 2022 Jan;36(1):1-16. doi: 10.1007/s40263-021-00884-z. Epub 2021 Dec 20.
4
Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses.
Small GTPases. 2022 Jan;13(1):14-47. doi: 10.1080/21541248.2021.1885264. Epub 2021 May 6.
5
Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma.
Life Sci Alliance. 2021 Mar 3;4(5). doi: 10.26508/lsa.201900332. Print 2021 May.
7
KALRN: A central regulator of synaptic function and synaptopathies.
Gene. 2021 Feb 5;768:145306. doi: 10.1016/j.gene.2020.145306. Epub 2020 Nov 13.
8
Kalirin and Trio: RhoGEFs in Synaptic Transmission, Plasticity, and Complex Brain Disorders.
Trends Neurosci. 2020 Jul;43(7):505-518. doi: 10.1016/j.tins.2020.05.002. Epub 2020 May 11.
10
TRIOBP-5 sculpts stereocilia rootlets and stiffens supporting cells enabling hearing.
JCI Insight. 2019 Jun 20;4(12). doi: 10.1172/jci.insight.128561.

本文引用的文献

1
Genomic organization and differential expression of Kalirin isoforms.
Gene. 2002 Feb 6;284(1-2):41-51. doi: 10.1016/s0378-1119(02)00386-4.
4
Rho GTPases in neuronal morphogenesis.
Nat Rev Neurosci. 2000 Dec;1(3):173-80. doi: 10.1038/35044547.
6
Rho GTPases in growth cone guidance.
Curr Opin Neurobiol. 2001 Feb;11(1):103-10. doi: 10.1016/s0959-4388(00)00180-x.
9
Expression of kalirin, a neuronal GDP/GTP exchange factor of the trio family, in the central nervous system of the adult rat.
J Comp Neurol. 2001 Jan 15;429(3):388-402. doi: 10.1002/1096-9861(20010115)429:3<388::aid-cne3>3.0.co;2-i.
10
Cellular and molecular features of axon collaterals and dendrites.
Trends Neurosci. 2000 Nov;23(11):557-65. doi: 10.1016/s0166-2236(00)01646-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验