Suppr超能文献

中和的磷酸骨架对B-DNA小沟的影响:分子动力学模拟研究

Effect of a neutralized phosphate backbone on the minor groove of B-DNA: molecular dynamics simulation studies.

作者信息

Hamelberg Donald, Williams Loren Dean, Wilson W David

机构信息

Department of Chemistry, Georgia State University, 50 Decatur Street, Atlanta, GA 30303, USA.

出版信息

Nucleic Acids Res. 2002 Aug 15;30(16):3615-23. doi: 10.1093/nar/gkf472.

Abstract

Alternative models have been presented to provide explanations for the sequence-dependent variation of the DNA minor groove width. In a structural model groove narrowing in A-tracts results from direct, short-range interactions among DNA bases. In an electrostatic model, the narrow minor groove of A-tracts is proposed to respond to sequence-dependent localization of water and cations. Molecular dynamics simulations on partially methylphosphonate substituted helical chains of d(TATAGGCCTATA) and d(CGCGAATTCGCG) duplexes have been carried out to help evaluate the effects of neutralizing DNA phosphate groups on the minor groove width. The results show that the time-average minor groove width of the GGCC duplex becomes significantly more narrow on neutralizing the phosphate backbone with methylphosphonates. The minor groove of the AATT sequence is normally narrow and the methylphosphonate substitutions have a smaller but measurable affect on this sequence. These results and models provide a system that can be tested by experiment and they support the hypothesis that the electrostatic environment around the minor groove affects the groove width in a sequence-dependent dynamic and time-average manner.

摘要

已经提出了替代模型来解释DNA小沟宽度的序列依赖性变化。在一个结构模型中,A序列中的沟变窄是由DNA碱基之间直接的短程相互作用导致的。在一个静电模型中,A序列的窄小沟被认为是对水和阳离子的序列依赖性定位做出的反应。已经对d(TATAGGCCTATA)和d(CGCGAATTCGCG)双链体的部分甲基膦酸酯取代螺旋链进行了分子动力学模拟,以帮助评估中和DNA磷酸基团对小沟宽度的影响。结果表明,用甲基膦酸酯中和磷酸主链后,GGCC双链体的时间平均小沟宽度显著变窄。AATT序列的小沟通常较窄,甲基膦酸酯取代对该序列有较小但可测量的影响。这些结果和模型提供了一个可以通过实验进行测试的系统,并且支持了小沟周围的静电环境以序列依赖性动态和时间平均方式影响沟宽度的假设。

相似文献

3
DNA structure: what's in charge?
J Mol Biol. 2000 Dec 15;304(5):803-20. doi: 10.1006/jmbi.2000.4167.
5
The solution structure of [d(CGC)r(aaa)d(TTTGCG)](2): hybrid junctions flanked by DNA duplexes.
Nucleic Acids Res. 2000 Mar 15;28(6):1322-31. doi: 10.1093/nar/28.6.1322.
6
DNA conformational flexibility study using phosphate backbone neutralization model.
Soft Matter. 2014 Feb 21;10(7):1045-55. doi: 10.1039/c3sm52345d.
7
Competitive Na(+) and Rb(+) binding in the minor groove of DNA.
J Am Chem Soc. 2004 Jun 2;126(21):6739-50. doi: 10.1021/ja049930z.

引用本文的文献

1
Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis.
Molecules. 2021 Sep 28;26(19):5871. doi: 10.3390/molecules26195871.
2
The structural plasticity of nucleic acid duplexes revealed by WAXS and MD.
Sci Adv. 2021 Apr 23;7(17). doi: 10.1126/sciadv.abf6106. Print 2021 Apr.
3
Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions.
J Phys Chem B. 2018 Feb 1;122(4):1484-1494. doi: 10.1021/acs.jpcb.7b10730. Epub 2018 Jan 22.
4
Control of DNA minor groove width and Fis protein binding by the purine 2-amino group.
Nucleic Acids Res. 2013 Jul;41(13):6750-60. doi: 10.1093/nar/gkt357. Epub 2013 May 9.
5
DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge.
Biochemistry. 2013 Apr 16;52(15):2526-35. doi: 10.1021/bi301561d. Epub 2013 Apr 2.
6
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein.
J Mol Biol. 2011 Feb 18;406(2):285-312. doi: 10.1016/j.jmb.2010.12.012. Epub 2010 Dec 15.
8
Intensities of DNA ion-phosphate modes in the low-frequency Raman spectra.
Eur Phys J E Soft Matter. 2010 Feb;31(2):201-5. doi: 10.1140/epje/i2010-10566-6. Epub 2010 Feb 12.
10
The contribution of phosphate-phosphate repulsions to the free energy of DNA bending.
Nucleic Acids Res. 2005 Mar 1;33(4):1257-68. doi: 10.1093/nar/gki272. Print 2005.

本文引用的文献

1
DNA helix structure and refinement algorithm: comparison of models for d(CCAGGCm5CTGG) derived from NUCLSQ, TNT and X-PLOR.
Acta Crystallogr D Biol Crystallogr. 1993 Sep 1;49(Pt 5):468-77. doi: 10.1107/S0907444993004858.
3
DNA structure: what's in charge?
J Mol Biol. 2000 Dec 15;304(5):803-20. doi: 10.1006/jmbi.2000.4167.
5
Electrostatic mechanisms of DNA deformation.
Annu Rev Biophys Biomol Struct. 2000;29:497-521. doi: 10.1146/annurev.biophys.29.1.497.
6
Nucleic acids: theory and computer simulation, Y2K.
Curr Opin Struct Biol. 2000 Apr;10(2):182-96. doi: 10.1016/s0959-440x(00)00076-2.
7
Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR.
Biopolymers. 1998;48(4):210-33. doi: 10.1002/(sici)1097-0282(1998)48:4<210::aid-bip3>3.3.co;2-p.
8
Sequence-specific binding of counterions to B-DNA.
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):629-33. doi: 10.1073/pnas.97.2.629.
9
Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G.
J Mol Biol. 1999 Sep 24;292(3):589-608. doi: 10.1006/jmbi.1999.3075.
10
DNA structure: cations in charge?
Curr Opin Struct Biol. 1999 Jun;9(3):298-304. doi: 10.1016/S0959-440X(99)80040-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验