Chiu T K, Dickerson R E
Molecular Biology Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA.
J Mol Biol. 2000 Aug 25;301(4):915-45. doi: 10.1006/jmbi.2000.4012.
The 1 A resolution X-ray crystal structures of Mg(2+) and Ca(2+) salts of the B-DNA decamers CCAACGTTGG and CCAGCGCTGG reveal sequence-specific binding of Mg(2+) and Ca(2+) to the major and minor grooves of DNA, as well as non-specific binding to backbone phosphate oxygen atoms. Minor groove binding involves H-bond interactions between cross-strand DNA base atoms of adjacent base-pairs and the cations' water ligands. In the major groove the cations' water ligands can interact through H-bonds with O and N atoms from either one base or adjacent bases, and in addition the softer Ca(2+) can form polar covalent bonds bridging adjacent N7 and O6 atoms at GG bases. For reasons outlined earlier, localized monovalent cations are neither expected nor found.Ultra-high atomic resolution gives an unprecedented view of hydration in both grooves of DNA, permits an analysis of individual anisotropic displacement parameters, and reveals up to 22 divalent cations per DNA duplex. Each DNA helix is quite anisotropic, and alternate conformations, with motion in the direction of opening and closing the minor groove, are observed for the sugar-phosphate backbone. Taking into consideration the variability of experimental parameters and crystal packing environments among these four helices, and 24 other Mg(2+) and Ca(2+) bound B-DNA structures, we conclude that sequence-specific and strand-specific binding of Mg(2+) and Ca(2+) to the major groove causes DNA bending by base-roll compression towards the major groove, while sequence-specific binding of Mg(2+) and Ca(2+) in the minor groove has a negligible effect on helix curvature. The minor groove opens and closes to accommodate Mg(2+) and Ca(2+) without the necessity for significant bending of the overall helix. The program Shelxdna was written to facilitate refinement and analysis of X-ray crystal structures by Shelxl-97 and to plot and analyze one or more Curves and Freehelix output files.
B-DNA 十聚体 CCAACGTTGG 和 CCAGCGCTGG 的 Mg(2+) 和 Ca(2+) 盐的 1 Å 分辨率 X 射线晶体结构揭示了 Mg(2+) 和 Ca(2+) 与 DNA 大沟和小沟的序列特异性结合,以及与主链磷酸氧原子的非特异性结合。小沟结合涉及相邻碱基对的跨链 DNA 碱基原子与阳离子的水配体之间的氢键相互作用。在大沟中,阳离子的水配体可以通过氢键与一个碱基或相邻碱基的 O 和 N 原子相互作用,此外,较软的 Ca(2+) 可以形成极性共价键,桥接 GG 碱基处相邻的 N7 和 O6 原子。由于前面所述的原因,既未预期也未发现局部单价阳离子。超高原子分辨率提供了前所未有的 DNA 两条沟中水分子的视图,允许分析单个各向异性位移参数,并揭示每个 DNA 双链体多达 22 个二价阳离子。每个 DNA 螺旋具有相当大的各向异性,并且观察到糖磷酸主链具有交替构象,其在打开和关闭小沟的方向上运动。考虑到这四个螺旋以及其他 24 个结合了 Mg(2+) 和 Ca(2+) 的 B-DNA 结构之间实验参数和晶体堆积环境的变异性,我们得出结论,Mg(2+) 和 Ca(2+) 与大沟的序列特异性和链特异性结合通过碱基向大沟卷曲压缩导致 DNA 弯曲,而 Mg(2+) 和 Ca(2+) 在小沟中的序列特异性结合对螺旋曲率的影响可忽略不计。小沟打开和关闭以容纳 Mg(2+) 和 Ca(2+),而无需整个螺旋发生明显弯曲。编写程序 Shelxdna 是为了便于使用 Shelxl-97 对 X 射线晶体结构进行精修和分析,并绘制和分析一个或多个 Curves 和 Freehelix 输出文件。