Suppr超能文献

与抓握相关的镜像神经元系统的架构设计与实现

Schema design and implementation of the grasp-related mirror neuron system.

作者信息

Oztop Erhan, Arbib Michael A

机构信息

USC Brain Project, University of Southern California, Los Angeles, CA 90089-2520, USA.

出版信息

Biol Cybern. 2002 Aug;87(2):116-40. doi: 10.1007/s00422-002-0318-1.

Abstract

Mirror neurons within a monkey's premotor area F5 fire not only when the monkey performs a certain class of actions but also when the monkey observes another monkey (or the experimenter) perform a similar action. It has thus been argued that these neurons are crucial for understanding of actions by others. We offer the hand-state hypothesis as a new explanation of the evolution of this capability: the basic functionality of the F5 mirror system is to elaborate the appropriate feedback - what we call the hand state - for opposition-space based control of manual grasping of an object. Given this functionality, the social role of the F5 mirror system in understanding the actions of others may be seen as an exaptation gained by generalizing from one's own hand to an other's hand. In other words, mirror neurons first evolved to augment the "canonical" F5 neurons (active during self-movement based on observation of an object) by providing visual feedback on "hand state," relating the shape of the hand to the shape of the object. We then introduce the MNS1 (mirror neuron system 1) model of F5 and related brain regions. The existing Fagg-Arbib-Rizzolatti-Sakata model represents circuitry for visually guided grasping of objects, linking the anterior intraparietal area (AIP) with F5 canonical neurons. The MNS1 model extends the AIP visual pathway by also modeling pathways, directed toward F5 mirror neurons, which match arm-hand trajectories to the affordances and location of a potential target object. We present the basic schemas for the MNS1 model, then aggregate them into three "grand schemas" - visual analysis of hand state, reach and grasp, and the core mirror circuit - for each of which we present a useful implementation (a non-neural visual processing system, a multijoint 3-D kinematics simulator, and a learning neural network, respectively). With this implementation we show how the mirror system may learn to recognize actions already in the repertoire of the F5 canonical neurons. We show that the connectivity pattern of mirror neuron circuitry can be established through training, and that the resultant network can exhibit a range of novel, physiologically interesting behaviors during the process of action recognition. We train the system on the basis of final grasp but then observe the whole time course of mirror neuron activity, yielding predictions for neurophysiological experiments under conditions of spatial perturbation, altered kinematics, and ambiguous grasp execution which highlight the importance of the timing of mirror neuron activity.

摘要

猴子前运动区F5内的镜像神经元不仅在猴子执行某类动作时放电,而且在猴子观察另一只猴子(或实验者)执行类似动作时也会放电。因此,有人认为这些神经元对于理解他人的动作至关重要。我们提出手部状态假说,作为对这种能力进化的一种新解释:F5镜像系统的基本功能是为基于对手部抓取物体的对立空间控制,精心制定适当的反馈——我们称之为手部状态。鉴于此功能,F5镜像系统在理解他人动作方面的社会作用,可能被视为通过从自身手部推广到他人手部而获得的一种扩展适应。换句话说,镜像神经元最初进化是为了通过提供关于“手部状态”的视觉反馈,增强“典型的”F5神经元(在基于对物体的观察进行自我运动时活跃),将手部形状与物体形状联系起来。然后,我们介绍F5及相关脑区的MNS1(镜像神经元系统1)模型。现有的Fagg-Arbib-Rizzolatti-Sakata模型代表了视觉引导抓取物体的电路,将顶内前区(AIP)与F5典型神经元相连。MNS1模型扩展了AIP视觉通路,还对指向F5镜像神经元的通路进行建模,这些通路将手臂-手部轨迹与潜在目标物体的可供性和位置相匹配。我们展示了MNS1模型的基本架构,然后将它们汇总为三个“大架构”——手部状态的视觉分析、伸手抓握和核心镜像电路——对于每个架构,我们都给出了一个有用的实现方式(分别是一个非神经视觉处理系统、一个多关节三维运动学模拟器和一个学习神经网络)。通过这种实现方式,我们展示了镜像系统如何学会识别已经在F5典型神经元指令库中的动作。我们表明,镜像神经元电路的连接模式可以通过训练建立,并且在动作识别过程中,所得网络可以表现出一系列新颖的、具有生理意义的行为。我们基于最终抓握对手部系统进行训练,但随后观察镜像神经元活动的整个时间进程,得出在空间扰动、运动学改变和抓握执行模糊等条件下神经生理学实验的预测结果,这些结果突出了镜像神经元活动时间的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验