Mamat Björn, Roth Annette, Grimm Clemens, Ermler Ulrich, Tziatzios Christos, Schubert Dieter, Thauer Rudolf K, Shima Seigo
Max-Planck-Institut für Biophysik, D-60528 Frankfurt am Main, Germany Institut für Biophysik der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany.
Protein Sci. 2002 Sep;11(9):2168-78. doi: 10.1110/ps.0211002.
Formyltransferase catalyzes the reversible formation of formylmethanofuran from N(5)-formyltetrahydromethanopterin and methanofuran, a reaction involved in the C1 metabolism of methanogenic and sulfate-reducing archaea. The crystal structure of the homotetrameric enzyme from Methanopyrus kandleri (growth temperature optimum 98 degrees C) has recently been solved at 1.65 A resolution. We report here the crystal structures of the formyltransferase from Methanosarcina barkeri (growth temperature optimum 37 degrees C) and from Archaeoglobus fulgidus (growth temperature optimum 83 degrees C) at 1.9 A and 2.0 A resolution, respectively. Comparison of the structures of the three enzymes revealed very similar folds. The most striking difference found was the negative surface charge, which was -32 for the M. kandleri enzyme, only -8 for the M. barkeri enzyme, and -11 for the A. fulgidus enzyme. The hydrophobic surface fraction was 50% for the M. kandleri enzyme, 56% for the M. barkeri enzyme, and 57% for the A. fulgidus enzyme. These differences most likely reflect the adaptation of the enzyme to different cytoplasmic concentrations of potassium cyclic 2,3-diphosphoglycerate, which are very high in M. kandleri (>1 M) and relatively low in M. barkeri and A. fulgidus. Formyltransferase is in a monomer/dimer/tetramer equilibrium that is dependent on the salt concentration. Only the dimers and tetramers are active, and only the tetramers are thermostable. The enzyme from M. kandleri is a tetramer, which is active and thermostable only at high concentrations of potassium phosphate (>1 M) or potassium cyclic 2,3-diphosphoglycerate. Conversely, the enzyme from M. barkeri and A. fulgidus already showed these properties, activity and stability, at much lower concentrations of these strong salting-out salts.
甲酰转移酶催化由N(5)-甲酰四氢甲烷蝶呤和甲烷呋喃可逆形成甲酰甲烷呋喃,该反应参与产甲烷古菌和硫酸盐还原古菌的C1代谢。最近已解析出坎氏甲烷嗜热菌(最适生长温度98摄氏度)的同四聚体酶的晶体结构,分辨率为1.65埃。我们在此分别报告巴氏甲烷八叠球菌(最适生长温度37摄氏度)和嗜热栖热放线菌(最适生长温度83摄氏度)的甲酰转移酶的晶体结构,分辨率分别为1.9埃和2.0埃。对这三种酶的结构进行比较发现它们的折叠方式非常相似。最显著的差异是表面负电荷,坎氏甲烷嗜热菌的酶为-32,巴氏甲烷八叠球菌的酶仅为-8,嗜热栖热放线菌的酶为-11。坎氏甲烷嗜热菌的酶的疏水表面比例为50%,巴氏甲烷八叠球菌的酶为56%,嗜热栖热放线菌的酶为57%。这些差异很可能反映了该酶对不同细胞质浓度的环化2,3-二磷酸甘油酸钾的适应性,环化2,3-二磷酸甘油酸钾在坎氏甲烷嗜热菌中含量非常高(>1 M),而在巴氏甲烷八叠球菌和嗜热栖热放线菌中相对较低。甲酰转移酶处于单体/二聚体/四聚体平衡状态,该平衡取决于盐浓度。只有二聚体和四聚体具有活性,只有四聚体具有热稳定性。坎氏甲烷嗜热菌的酶是四聚体,只有在高浓度的磷酸钾(>1 M)或环化2,3-二磷酸甘油酸钾存在时才具有活性且热稳定。相反,巴氏甲烷八叠球菌和嗜热栖热放线菌的酶在这些强盐析盐的浓度低得多时就已表现出这些性质,即活性和稳定性。