Chadwick Grayson L, Skennerton Connor T, Laso-Pérez Rafael, Leu Andy O, Speth Daan R, Yu Hang, Morgan-Lang Connor, Hatzenpichler Roland, Goudeau Danielle, Malmstrom Rex, Brazelton William J, Woyke Tanja, Hallam Steven J, Tyson Gene W, Wegener Gunter, Boetius Antje, Orphan Victoria J
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America.
Max-Planck Institute for Marine Microbiology, Bremen, Germany.
PLoS Biol. 2022 Jan 5;20(1):e3001508. doi: 10.1371/journal.pbio.3001508. eCollection 2022 Jan.
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.
甲烷厌氧氧化与硫酸盐还原耦合是一个微生物介导的过程,需要厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌(SRB)之间的互营共生关系。基于基因组分类,ANME谱系在盐杆菌门内是多系的,且均未通过纯培养分离得到。在此,我们从环境宏基因组和流式分选的互营共生聚集体中重建了28个ANME基因组。结合对先前发表数据集的重新分析,这些基因组能够对所有海洋ANME进化枝进行比较分析。我们回顾了将ANME与其产甲烷亲属区分开来的基因组特征,并确定了不同ANME进化枝之间的差异。预测参与新型电子歧化反应的大型多血红素细胞色素和生物能量复合体在ANME古菌中分布广泛且保守,而各进化枝之间合成代谢C1途径存在显著差异。我们的分析提出了甲基营养型产甲烷可能从甲烷氧化祖先进化而来的可能性。