Suppr超能文献

映射硫醇寡肽酶和神经溶素之间的序列差异揭示了底物识别中的关键残基。

Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition.

作者信息

Ray Kallol, Hines Christina S, Rodgers David W

机构信息

Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA.

出版信息

Protein Sci. 2002 Sep;11(9):2237-46. doi: 10.1110/ps.0216302.

Abstract

The highly homologous endopeptidases thimet oligopeptidase and neurolysin are both restricted to short peptide substrates and share many of the same cleavage sites on bioactive and synthetic peptides. They sometimes target different sites on the same peptide, however, and defining the determinants of differential recognition will help us to understand how both enzymes specifically target a wide variety of cleavage site sequences. We have mapped the positions of the 224 surface residues that differ in sequence between the two enzymes onto the surface of the neurolysin crystal structure. Although the deep active site channel accounts for about one quarter of the total surface area, only 11% of the residue differences map to this region. Four isolated sequence changes (R470/E469, R491/M490, N496/H495, and T499/R498; neurolysin residues given first) are well positioned to affect recognition of substrate peptides, and differences in cleavage site specificity can be largely rationalized on the basis of these changes. We also mapped the positions of three cysteine residues believed to be responsible for multimerization of thimet oligopeptidase, a process that inactivates the enzyme. These residues are clustered on the outside of one channel wall, where multimerization via disulfide formation is unlikely to block the substrate-binding site. Finally, we mapped the regulatory phosphorylation site in thimet oligopeptidase to a location on the outside of the molecule well away from the active site, which indicates this modification has an indirect effect on activity.

摘要

高度同源的内肽酶硫醚寡肽酶和神经溶素都作用于短肽底物,并且在生物活性肽和合成肽上具有许多相同的切割位点。然而,它们有时会靶向同一肽段上的不同位点,确定差异识别的决定因素将有助于我们理解这两种酶如何特异性地靶向多种切割位点序列。我们已经将两种酶之间序列不同的224个表面残基的位置映射到神经溶素晶体结构的表面上。尽管深层活性位点通道约占总表面积的四分之一,但只有11%的残基差异映射到该区域。四个孤立的序列变化(R470/E469、R491/M490、N496/H495和T499/R498;先给出神经溶素的残基)的位置有利于影响底物肽的识别,并且切割位点特异性的差异在很大程度上可以基于这些变化得到合理的解释。我们还映射了据信负责硫醚寡肽酶多聚化的三个半胱氨酸残基的位置,多聚化过程会使该酶失活。这些残基聚集在一个通道壁的外侧,通过二硫键形成进行多聚化不太可能阻断底物结合位点。最后,我们将硫醚寡肽酶中的调节磷酸化位点映射到分子外侧远离活性位点的位置,这表明这种修饰对活性有间接影响。

相似文献

6
Human thimet oligopeptidase.人硫醇寡肽酶
Biochem J. 1993 Sep 1;294 ( Pt 2)(Pt 2):451-7. doi: 10.1042/bj2940451.

引用本文的文献

6
Neurolysin: From Initial Detection to Latest Advances.神经溶解酶:从最初的发现到最新进展。
Neurochem Res. 2018 Nov;43(11):2017-2024. doi: 10.1007/s11064-018-2624-6. Epub 2018 Aug 29.
7
Redox modulation of thimet oligopeptidase activity by hydrogen peroxide.过氧化氢对硫醇寡肽酶活性的氧化还原调节
FEBS Open Bio. 2017 Jun 19;7(7):1037-1050. doi: 10.1002/2211-5463.12245. eCollection 2017 Jul.
9

本文引用的文献

3
Structure of neurolysin reveals a deep channel that limits substrate access.神经溶素的结构揭示了一个限制底物进入的深通道。
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3127-32. doi: 10.1073/pnas.051633198. Epub 2001 Mar 6.
4
The neuropeptide processing enzyme EC 3.4.24.15 is modulated by protein kinase A phosphorylation.
J Biol Chem. 2000 Nov 24;275(47):36514-22. doi: 10.1074/jbc.M001843200.
10
A comparative conformational analysis of thimet oligopeptidase (EC 3.4.24.15) substrates.
J Pept Res. 1998 Jun;51(6):452-9. doi: 10.1111/j.1399-3011.1998.tb00644.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验