Suppr超能文献

神经溶素的结构揭示了一个限制底物进入的深通道。

Structure of neurolysin reveals a deep channel that limits substrate access.

作者信息

Brown C K, Madauss K, Lian W, Beck M R, Tolbert W D, Rodgers D W

机构信息

Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3127-32. doi: 10.1073/pnas.051633198. Epub 2001 Mar 6.

Abstract

The zinc metallopeptidase neurolysin is shown by x-ray crystallography to have large structural elements erected over the active site region that allow substrate access only through a deep narrow channel. This architecture accounts for specialization of this neuropeptidase to small bioactive peptide substrates without bulky secondary and tertiary structures. In addition, modeling studies indicate that the length of a substrate N-terminal to the site of hydrolysis is restricted to approximately 10 residues by the limited size of the active site cavity. Some structural elements of neurolysin, including a five-stranded beta-sheet and the two active site helices, are conserved with other metallopeptidases. The connecting loop regions of these elements, however, are much extended in neurolysin, and they, together with other open coil elements, line the active site cavity. These potentially flexible elements may account for the ability of the enzyme to cleave a variety of sequences.

摘要

通过X射线晶体学研究表明,锌金属肽酶神经溶素在活性位点区域上方有大型结构元件,这些元件使得底物只能通过一条深而窄的通道进入。这种结构解释了这种神经肽酶对没有庞大二级和三级结构的小生物活性肽底物的专一性。此外,建模研究表明,由于活性位点腔的尺寸有限,水解位点N端的底物长度被限制在大约10个残基。神经溶素的一些结构元件,包括一个五链β折叠和两个活性位点螺旋,与其他金属肽酶是保守的。然而,这些元件的连接环区域在神经溶素中大大延长,并且它们与其他开放螺旋元件一起构成了活性位点腔的内壁。这些潜在的柔性元件可能解释了该酶切割多种序列的能力。

相似文献

1
Structure of neurolysin reveals a deep channel that limits substrate access.
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3127-32. doi: 10.1073/pnas.051633198. Epub 2001 Mar 6.
2
Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization.
J Biol Chem. 2004 May 7;279(19):20480-9. doi: 10.1074/jbc.M400795200. Epub 2004 Mar 3.
3
Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase.
J Biol Chem. 2007 Mar 30;282(13):9722-9732. doi: 10.1074/jbc.M609897200. Epub 2007 Jan 24.
5
Allosteric inhibition of the neuropeptidase neurolysin.
J Biol Chem. 2014 Dec 19;289(51):35605-19. doi: 10.1074/jbc.M114.620930. Epub 2014 Nov 5.
6
Structural basis of divergent substrate recognition and inhibition of human neurolysin.
Sci Rep. 2024 Aug 8;14(1):18420. doi: 10.1038/s41598-024-67639-w.
7
Crystallization and preliminary analysis of neurolysin.
Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1644-6. doi: 10.1107/s0907444900012683.
9
Metallopeptidase, neurolysin, as a novel molecular tool for analysis of properties of cancer-producing matrix metalloproteinases-2 and -9.
Appl Microbiol Biotechnol. 2007 Jul;75(6):1285-91. doi: 10.1007/s00253-007-0952-6. Epub 2007 Apr 3.
10
Functional and structural insights into astacin metallopeptidases.
Biol Chem. 2012 Oct;393(10):1027-41. doi: 10.1515/hsz-2012-0149.

引用本文的文献

1
Structural basis of divergent substrate recognition and inhibition of human neurolysin.
Sci Rep. 2024 Aug 8;14(1):18420. doi: 10.1038/s41598-024-67639-w.
2
Imidazole Bioisostere Activators of Endopeptidase Neurolysin with Enhanced Potency and Metabolic Stability.
ACS Med Chem Lett. 2024 Mar 29;15(4):510-517. doi: 10.1021/acsmedchemlett.4c00009. eCollection 2024 Apr 11.
3
The evolution of small molecule enzyme activators.
RSC Med Chem. 2023 Sep 22;14(11):2206-2230. doi: 10.1039/d3md00399j. eCollection 2023 Nov 15.
4
Development of fluorogenic substrates for colorectal tumor-related neuropeptidases for activity-based diagnosis.
Chem Sci. 2023 Apr 11;14(17):4495-4499. doi: 10.1039/d2sc07029d. eCollection 2023 May 3.
5
Probing the Conformational States of Thimet Oligopeptidase in Solution.
Int J Mol Sci. 2022 Jun 30;23(13):7297. doi: 10.3390/ijms23137297.
6
Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting.
Pharmacol Rev. 2022 Jul;74(3):462-505. doi: 10.1124/pharmrev.120.000236.
7
9
Identification and Characterization of Two Structurally Related Dipeptides that Enhance Catalytic Efficiency of Neurolysin.
J Pharmacol Exp Ther. 2021 Nov;379(2):191-202. doi: 10.1124/jpet.121.000840. Epub 2021 Aug 13.
10
Perturbation of ACE2 Structural Ensembles by SARS-CoV-2 Spike Protein Binding.
J Chem Theory Comput. 2021 Sep 14;17(9):5896-5906. doi: 10.1021/acs.jctc.1c00325. Epub 2021 Aug 12.

本文引用的文献

1
[29] Preparation of selenomethionyl proteins for phase determination.
Methods Enzymol. 1997;276:523-530. doi: 10.1016/S0076-6879(97)76075-0.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
4
Crystallization and preliminary analysis of neurolysin.
Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1644-6. doi: 10.1107/s0907444900012683.
5
Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon.
J Mol Biol. 2000 Feb 18;296(2):341-9. doi: 10.1006/jmbi.1999.3492.
7
Secretion of metalloendopeptidase 24.15 (EC 3.4.24.15).
DNA Cell Biol. 1999 Oct;18(10):781-9. doi: 10.1089/104454999314926.
9
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. doi: 10.1107/s0907444998003254.
10
Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis.
Cell. 1998 Jul 24;94(2):161-70. doi: 10.1016/s0092-8674(00)81416-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验