Whiteman Matthew, Hong Huang Shan, Jenner Andrew, Halliwell Barry
Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
Biochem Biophys Res Commun. 2002 Aug 30;296(4):883-9. doi: 10.1016/s0006-291x(02)02018-1.
Oxidative damage to DNA has been reported to occur in a wide variety of disease states. The most widely used "marker" for oxidative DNA damage is 8-hydroxyguanine. However, the use of only one marker has limitations. Exposure of calf thymus DNA to an .OH-generating system (CuCl(2), ascorbate, H(2)O(2)) or to hypochlorous acid (HOCl), led to the extensive production of multiple oxidized or chlorinated DNA base products, as measured by gas chromatography-mass spectrometry. The addition of peroxynitrite (ONOO(-)) (<200 microM) or SIN-1 (1mM) to oxidized DNA led to the extensive loss of 8-hydroxyguanine, 5-hydroxycytosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 2-hydroxyadenine, 8-hydroxyadenine, and 4,6-diamino-5-formamidopyrimidine were lost at higher ONOO(-) concentrations (>200 microM). Exposure of DNA to HOCl led to the generation of 5-Cl uracil and 8-Cl adenine and addition of ONOO(-) (<200 microM) or SIN-1 (1mM) led to an extensive loss of 8-Cl adenine and a small loss of 5-Cl uracil at higher concentrations (>500 microM). An .OH-generating system (CuCl(2)/ascorbate/H(2)O(2)) could also destroy these chlorinated species. Treatment of oxidized or chlorinated DNA with acidified nitrite (NO(2)(-), pH 3) led to substantial loss of various base lesions, in particular 8-OH guanine, 5-OH cytosine, thymine glycol, and 8-Cl adenine. Our data indicate the possibility that when ONOO(-), nitrite in regions of low pH or .OH are produced at sites of inflammation, levels of certain damaged DNA bases could represent an underestimate of ongoing DNA damage. This study emphasizes the need to examine more than one modified DNA base when assessing the role of reactive species in human disease.
据报道,DNA的氧化损伤发生在多种疾病状态中。氧化DNA损伤最广泛使用的“标志物”是8-羟基鸟嘌呤。然而,仅使用一种标志物存在局限性。通过气相色谱 - 质谱法测定,将小牛胸腺DNA暴露于产生活性羟基(·OH)的体系(CuCl₂、抗坏血酸、H₂O₂)或次氯酸(HOCl)中,会导致多种氧化或氯化的DNA碱基产物大量产生。向氧化的DNA中加入过氧亚硝酸盐(ONOO⁻)(<200 μM)或SIN - 1(1 mM)会导致8-羟基鸟嘌呤大量损失,在更高的ONOO⁻浓度(>200 μM)下,5-羟基胞嘧啶、2,6 - 二氨基 - 4 - 羟基 - 5 - 甲酰胺基嘧啶、2 - 羟基腺嘌呤、8 - 羟基腺嘌呤和4,6 - 二氨基 - 5 - 甲酰胺基嘧啶也会损失。DNA暴露于HOCl会导致5 - Cl尿嘧啶和8 - Cl腺嘌呤的生成,加入ONOO⁻(<200 μM)或SIN - 1(1 mM)会导致8 - Cl腺嘌呤大量损失,在更高浓度(>500 μM)下5 - Cl尿嘧啶有少量损失。产生活性羟基(·OH)的体系(CuCl₂/抗坏血酸/H₂O₂)也能破坏这些氯化产物。用酸化的亚硝酸盐(NO₂⁻,pH 3)处理氧化或氯化的DNA会导致各种碱基损伤大量损失,特别是8 - OH鸟嘌呤、5 - OH胞嘧啶、胸腺嘧啶二醇和8 - Cl腺嘌呤。我们的数据表明,当在炎症部位产生ONOO⁻、低pH区域的亚硝酸盐或活性羟基(·OH)时,某些受损DNA碱基的水平可能低估了正在发生的DNA损伤。这项研究强调在评估活性物质在人类疾病中的作用时,需要检测不止一种修饰的DNA碱基。