Suppr超能文献

X射线影像增强器的畸变校正:局部去扭曲多项式和径向基函数神经网络

Distortion correction for x-ray image intensifiers: local unwarping polynomials and RBF neural networks.

作者信息

Cerveri P, Forlani C, Borghese N A, Ferrigno G

机构信息

Department of Bioengineering, Politecnico di Milano, Italy.

出版信息

Med Phys. 2002 Aug;29(8):1759-71. doi: 10.1118/1.1488602.

Abstract

In this paper we present two novel techniques, namely a local unwarping polynomial (LUP) and a hierarchical radial basis function (HRBF) network, to correct geometric distortions in XRII images. The two techniques have been implemented and compared, in terms of residual error measured at control and intermediate points, with local and global methods reported in the previous literature. In particular, LUP rests on a locally optimized 3rd degree polynomial applied within each quadrilateral cell on the rectilinear calibration grid of points. HRBF, based on a feed-forward neural network paradigm, is constituted by a set of hierarchical layers at increasing cut-off frequency, each characterized by a set of Gaussian functions. Extensive experiments have been performed both on simulated and real data. In simulation, we tested the effect of pincushion, sigmoidal and local distortions, along with the number of calibration points. Provided that a sufficient number of cells of the calibration grid is available, the obtained accuracy for both LUP and HRBF is comparable to or better than that of global polynomial technique. Tests on real data, carried out by using two different (12 in. and 16 in.) XRIIs, showed that the global polynomial accuracy (0.16+/-0.08 pixels) is slightly worse than that of LUP (0.07+/-0.05 pixels) and HRBF (0.08+/-0.04 pixels). The effects of the discontinuity at the border of the local areas and the decreased accuracy at intermediate points, typical of local techniques, have been proved to be smoothed for both LUP and HRBF.

摘要

在本文中,我们提出了两种新技术,即局部解扭曲多项式(LUP)和分层径向基函数(HRBF)网络,用于校正X射线影像增强器(XRII)图像中的几何失真。这两种技术已经实现,并根据在控制点和中间点测量的残余误差,与先前文献中报道的局部和全局方法进行了比较。具体而言,LUP基于在直线校准点网格的每个四边形单元内应用的局部优化三次多项式。基于前馈神经网络范式的HRBF由一组截止频率不断增加的分层组成,每个分层由一组高斯函数表征。我们对模拟数据和真实数据都进行了广泛的实验。在模拟中,我们测试了枕形失真、S形失真和局部失真的影响,以及校准点的数量。如果校准网格有足够数量的单元,LUP和HRBF所获得的精度与全局多项式技术相当或更好。使用两种不同尺寸(12英寸和16英寸)的XRII对真实数据进行的测试表明,全局多项式精度(0.16±0.08像素)略低于LUP(0.07±0.05像素)和HRBF(0.08±0.04像素)。对于LUP和HRBF,局部区域边界处的不连续性影响以及局部技术典型的中间点精度下降都已被证明得到了平滑处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验