Kleinschmidt Andreas, Thilo Kai V, Büchel Christian, Gresty Michael A, Bronstein Adolfo M, Frackowiak Richard S J
Department of Neurology, Johann Wolfgang Goethe-University, D-60590 Frankfurt, Germany.
Neuroimage. 2002 Aug;16(4):873-82. doi: 10.1006/nimg.2002.1181.
Both self-motion and objects moving in our visual field generate visual motion by displacing images on the retina. Resolving this ambiguity may seem effortless but large-field visual-motion stimuli can yield perceptual rivalry between the real percept of object-motion and the illusory percept of self-motion (vection). We used functional magnetic resonance imaging to record brain activity in human observers exposed to constant-velocity roll-motion. This stimulus induced responses in areas reaching from calcarine to parieto-occipital and to ventral and lateral temporo-occipital cortex and the anterior insula. During vection, early motion-sensitive visual areas and vestibular parieto-insular cortex deactivated, whereas higher-order parieto- and temporo-occipital areas known to respond to optical flow retained identical activity levels. Within this sustained response, these latter areas displayed transient activations in response to each perceptual switch as identified in event-related analyses. Our results thus show that these areas are responsive to the type of visual motion stimulus and highly sensitive to its perceptual bistability. The only region to be more active during perceived self-motion was in, or close to, the cerebellar nodulus. This activation may correspond to the gain increase of torsional optokinetic nystagmus during vection and/or to changes in sensory processing related to the rotational percept. In conclusion, we identified neural correlates of perceiving self-motion from vision alone, i.e., in the absence of confirmatory vestibular or proprioceptive input. These functional properties preserve the organism's ability to move accurately in its environment by relying on visual cues under conditions when the other spatial senses fail to provide such information.
自我运动和在我们视野中移动的物体都会通过使视网膜上的图像移位而产生视觉运动。解决这种模糊性看似毫不费力,但大视野视觉运动刺激会在物体运动的真实感知和自我运动的虚幻感知(vection,视动)之间产生感知竞争。我们使用功能磁共振成像来记录暴露于等速翻滚运动的人类观察者的大脑活动。这种刺激在从距状裂到顶枕叶、腹侧和外侧颞枕叶皮质以及前岛叶的区域诱发了反应。在视动期间,早期运动敏感视觉区域和前庭顶岛叶皮质失活,而已知对光流有反应的高阶顶叶和颞枕叶区域保持相同的活动水平。在这种持续反应中,这些后一种区域在与事件相关分析中确定的每次感知转换时显示出短暂激活。因此,我们的结果表明,这些区域对视觉运动刺激的类型有反应,并且对其感知双稳性高度敏感。在感知到的自我运动期间唯一更活跃的区域位于小脑小结内或其附近。这种激活可能对应于视动期间扭转视动性眼球震颤的增益增加和/或与旋转感知相关的感觉处理变化。总之,我们确定了仅从视觉中感知自我运动的神经关联,即在没有确认性前庭或本体感觉输入的情况下。这些功能特性通过在其他空间感官无法提供此类信息的条件下依靠视觉线索,保留了生物体在其环境中准确移动的能力。