Suppr超能文献

磷脂酰胆碱双层膜单分子层中疏水缺陷演化的分子动力学模拟:与膜融合机制的相关性

Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms.

作者信息

Tieleman D Peter, Bentz Joe

机构信息

Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

出版信息

Biophys J. 2002 Sep;83(3):1501-10. doi: 10.1016/S0006-3495(02)73920-9.

Abstract

The spontaneous formation of the phospholipid bilayer underlies the permeability barrier function of the biological membrane. Tears or defects that expose water to the acyl chains are spontaneously healed by lipid lateral diffusion. However, mechanical barriers, e.g., protein aggregates held in place, could sustain hydrophobic defects. Such defects have been postulated to occur in processes such as membrane fusion. This gives rise to a new question in bilayer structure: What do the lipids do in the absence of lipid lateral diffusion to minimize the free energy of a hydrophobic defect? As a first step to understand this rather fundamental question about bilayer structure, we performed molecular dynamic simulations of up to 10 ns of a planar bilayer from which lipids have been deleted randomly from one monolayer. In one set of simulations, approximately one-half of the lipids in the defect monolayer were restrained to form a mechanical barrier. In the second set, lipids were free to diffuse around. The question was simply whether the defects caused by removing a lipid would aggregate together, forming a large hydrophobic cavity, or whether the membrane would adjust in another way. When there are no mechanical barriers, the lipids in the defect monolayer simply spread out and thin with little effect on the other intact monolayer. In the presence of a mechanical barrier, the behavior of the lipids depends on the size of the defect. When 3 of 64 lipids are removed, the remaining lipids adjust the lower one-half of their chains, but the headgroup structure changes little and the intact monolayer is unaffected. When 6 to 12 lipids are removed, the defect monolayer thins, lipid disorder increases, and lipids from the intact monolayer move toward the defect monolayer. Whereas this is a highly simplified model of a fusion site, this engagement of the intact monolayer into the fusion defect is strikingly consistent with recent results for influenza hemagglutinin mediated fusion.

摘要

磷脂双分子层的自发形成是生物膜通透性屏障功能的基础。使水接触到酰基链的撕裂或缺陷会通过脂质的侧向扩散自发愈合。然而,机械屏障,例如固定在原位的蛋白质聚集体,可能会维持疏水缺陷。据推测,这种缺陷会在膜融合等过程中出现。这就引发了关于双分子层结构的一个新问题:在没有脂质侧向扩散的情况下,脂质如何作用以最小化疏水缺陷的自由能?作为理解这个关于双分子层结构相当基本问题的第一步,我们对一个平面双分子层进行了长达10纳秒的分子动力学模拟,其中从一个单分子层中随机删除了脂质。在一组模拟中,缺陷单分子层中大约一半的脂质被限制形成一个机械屏障。在第二组模拟中,脂质可以自由扩散。问题很简单,即去除一个脂质所导致的缺陷是会聚集在一起形成一个大的疏水腔,还是膜会以另一种方式进行调整。当没有机械屏障时,缺陷单分子层中的脂质只是简单地扩散并变薄,对另一个完整的单分子层几乎没有影响。在存在机械屏障的情况下,脂质的行为取决于缺陷的大小。当64个脂质中的3个被去除时,剩余的脂质会调整其链的下半部分,但头部基团结构变化不大,完整的单分子层不受影响。当6到12个脂质被去除时,缺陷单分子层变薄,脂质无序度增加,完整单分子层中的脂质会向缺陷单分子层移动。尽管这是一个高度简化的融合位点模型,但完整单分子层与融合缺陷的这种相互作用与流感血凝素介导的融合的最新结果惊人地一致。

相似文献

2
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
3
Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations.
J Am Chem Soc. 2009 Oct 28;131(42):15194-202. doi: 10.1021/ja904450t.
5
Simulating induced interdigitation in membranes.
Biophys J. 2004 Sep;87(3):1596-605. doi: 10.1529/biophysj.104.045005.
6
Formation and finite element analysis of tethered bilayer lipid structures.
Langmuir. 2010 Dec 7;26(23):18199-208. doi: 10.1021/la1021802. Epub 2010 Oct 26.
9
Effect of sodium chloride on a lipid bilayer.
Biophys J. 2003 Sep;85(3):1647-55. doi: 10.1016/S0006-3495(03)74594-9.
10
In situ x-ray reflectivity studies on the formation of substrate-supported phospholipid bilayers and monolayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031909. doi: 10.1103/PhysRevE.77.031909. Epub 2008 Mar 11.

引用本文的文献

3
Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers.
J Diabetes Res. 2016;2016:1749196. doi: 10.1155/2016/1749196. Epub 2015 Nov 16.
4
How Tolerant are Membrane Simulations with Mismatch in Area per Lipid between Leaflets?
J Chem Theory Comput. 2015 Jul 14;11(7):3466-77. doi: 10.1021/acs.jctc.5b00232.
5
Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes.
PLoS One. 2010 Jun 17;5(6):e11162. doi: 10.1371/journal.pone.0011162.
6
Modeling kinetics of subcellular disposition of chemicals.
Chem Rev. 2009 May;109(5):1793-899. doi: 10.1021/cr030440j.
7
Structural change in lipid bilayers and water penetration induced by shock waves: molecular dynamics simulations.
Biophys J. 2006 Sep 15;91(6):2198-205. doi: 10.1529/biophysj.105.077677. Epub 2006 Jun 23.
8
Triggering and visualizing the aggregation and fusion of lipid membranes in microfluidic chambers.
Biophys J. 2006 Jul 1;91(1):233-43. doi: 10.1529/biophysj.105.076398. Epub 2006 Apr 14.
9
Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study.
Biophys J. 2006 Jun 15;90(12):4345-60. doi: 10.1529/biophysj.105.071456. Epub 2006 Mar 31.
10
Molecular dynamics simulations of the lipid bilayer edge.
Biophys J. 2004 Jul;87(1):182-92. doi: 10.1529/biophysj.103.031054.

本文引用的文献

1
Kinetics of influenza hemagglutinin-mediated membrane fusion as a function of technique.
Anal Biochem. 2002 Apr 15;303(2):145-52. doi: 10.1006/abio.2002.5590.
2
Stalk model of membrane fusion: solution of energy crisis.
Biophys J. 2002 Feb;82(2):882-95. doi: 10.1016/S0006-3495(02)75450-7.
3
Membrane fusion: stalk model revisited.
Biophys J. 2002 Feb;82(2):693-712. doi: 10.1016/S0006-3495(02)75432-5.
4
Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation.
Biophys J. 2001 Nov;81(5):2484-94. doi: 10.1016/S0006-3495(01)75894-8.
5
Simulation of the spontaneous aggregation of phospholipids into bilayers.
J Am Chem Soc. 2001 Sep 5;123(35):8638-9. doi: 10.1021/ja0159618.
7
The 1-127 HA2 construct of influenza virus hemagglutinin induces cell-cell hemifusion.
Biochemistry. 2001 Jul 27;40(28):8378-86. doi: 10.1021/bi010466+.
8
A quantitative model for membrane fusion based on low-energy intermediates.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7235-40. doi: 10.1073/pnas.121191898. Epub 2001 Jun 12.
9
Mechanisms of viral membrane fusion and its inhibition.
Annu Rev Biochem. 2001;70:777-810. doi: 10.1146/annurev.biochem.70.1.777.
10
Deployment of membrane fusion protein domains during fusion.
Cell Biol Int. 2000;24(11):819-38. doi: 10.1006/cbir.2000.0632.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验