Suppr超能文献

Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (invited).

作者信息

Liu Huiwen, Bhushan Bharat, Eck W, Kueller A

机构信息

Nanotribology Laboratory for Information Storage and MEMS/NEMS, The Ohio State University, Columbus 43210-1107, USA.

出版信息

Ultramicroscopy. 2002 May;91(1-4):185-202. doi: 10.1016/s0304-3991(02)00099-2.

Abstract

Understanding the relationships between molecular structure and nanotribological performance of self-assembled monolayers (SAMs) are quite important for molecular tailoring for efficient lubrication. For this purpose, SAMs, having alkyl and biphenyl spacer chains with different surface terminal groups (-CH3, -COOH, and -OH), and head groups (-SH and -OH), were prepared. The influence of spacer chains, surface terminal groups, and head groups on adhesion, friction and wear properties were investigated by contact mode atomic force microscopy (AFM). The relative stiffness of SAMs was determined by force modulation mode AFM and indentation experiments using load-displacement curves. The friction properties of SAMs are explained using a molecular spring model in which local stiffness governs the friction properties. Micropatterned SAMs specimen were fabricated and studied to verify the molecular spring model. The influence of relative humidity, temperature and velocity on adhesion and friction was studied. The failure mechanisms of SAMs and substrates were investigated by wear and continuous microscratch AFM technique. Based on these studies, the adhesion, friction and wear mechanisms of SAMs at molecular scale are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验