Bhushan Bharat, Kwak Kwang Joo, Gupta Samit, Lee Stephen C
Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA.
J R Soc Interface. 2009 Aug 6;6(37):719-33. doi: 10.1098/rsif.2008.0398. Epub 2008 Nov 4.
Proteins on biomicroelectromechanical systems (BioMEMS) confer specific molecular functionalities. In planar FET sensors (field-effect transistors, a class of devices whose protein-sensing capabilities we demonstrated in physiological buffers), interfacial proteins are analyte receptors, determining sensor molecular recognition specificity. Receptors are bound to the FET through a polymeric interface, and gross disruption of interfaces that removes a large percentage of receptors or inactivates large fractions of them diminishes sensor sensitivity. Sensitivity is also determined by the distance between the bound analyte and the semiconductor. Consequently, differential properties of surface polymers are design parameters for FET sensors. We compare thickness, surface roughness, adhesion, friction and wear properties of silane polymer layers bound to oxides (SiO(2) and Al(2)O(3), as on AlGaN HFETs). We compare those properties of the film-substrate pairs after an additional deposition of biotin and streptavidin. Adhesion between protein and device and interfacial friction properties affect FET reliability because these parameters affect wear resistance of interfaces to abrasive insult in vivo. Adhesion/friction determines the extent of stickage between the interface and tissue and interfacial resistance to mechanical damage. We document systematic, consistent differences in thickness and wear resistance of silane films that can be correlated with film chemistry and deposition procedures, providing guidance for rational interfacial design for planar AlGaN HFET sensors.
生物微机电系统(BioMEMS)上的蛋白质具有特定的分子功能。在平面场效应晶体管(FET)传感器中(场效应晶体管是一类我们已在生理缓冲液中证明其蛋白质传感能力的器件),界面蛋白质是分析物受体,决定了传感器的分子识别特异性。受体通过聚合物界面与FET结合,而界面的严重破坏如果去除了很大比例的受体或使很大一部分受体失活,就会降低传感器的灵敏度。灵敏度还由结合的分析物与半导体之间的距离决定。因此,表面聚合物的差异特性是FET传感器的设计参数。我们比较了与氧化物(如在AlGaN高电子迁移率晶体管上的SiO₂和Al₂O₃)结合的硅烷聚合物层的厚度、表面粗糙度、附着力、摩擦力和磨损特性。我们比较了在额外沉积生物素和链霉亲和素后薄膜 - 衬底对的那些特性。蛋白质与器件之间的附着力和界面摩擦特性会影响FET的可靠性,因为这些参数会影响界面在体内对磨损损伤的耐磨性。附着力/摩擦力决定了界面与组织之间的粘连程度以及界面抵抗机械损伤的能力。我们记录了硅烷薄膜在厚度和耐磨性方面系统、一致的差异,这些差异与薄膜化学和沉积程序相关,为平面AlGaN高电子迁移率晶体管传感器的合理界面设计提供指导。