Suppr超能文献

通过稳态进化改进多目标遗传优化中帕累托前沿的采样:一种帕累托收敛遗传算法

Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a pareto converging genetic algorithm.

作者信息

Kumar Rajeev, Rockett Peter

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721 302, India.

出版信息

Evol Comput. 2002 Fall;10(3):283-314. doi: 10.1162/106365602760234117.

Abstract

Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort.

摘要

先前关于多目标遗传算法的工作主要集中在防止遗传漂移上,而收敛问题很少受到关注。在本文中,我们提出了一种简单的稳态策略——帕累托收敛遗传算法(PCGA),它能自然地对解空间进行采样,并确保种群朝着帕累托前沿进化。PCGA无需共享/小生境技术,从而将启发式选择的参数和过程减至最少。我们引入了一种基于秩直方图的系统方法来评估向帕累托前沿的收敛情况,在大多数实际搜索问题中,帕累托前沿按定义是未知的。我们认为种群中总是存在一定的遗传物质继承,超过某个点后不太可能有任何显著收益,因此建议了一个终止计算的停止准则。为了进一步促进多样性和竞争,可以选择使用非迁移岛模型;这种方法特别适用于许多困难的(现实世界)问题,这些问题往往会陷入(未知的)局部最小值。文中给出了三个基准问题的结果,并与早期方法的结果进行了比较。结果表明,PCGA无需小生境技术就能对帕累托前沿进行多样采样,且计算量显著减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验