Knowles J D, Corne D W
School of Computer Science, Cybernetics and Electronic Engineering, University of Reading, UK.
Evol Comput. 2000 Summer;8(2):149-72. doi: 10.1162/106365600568167.
We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1 + 1)-PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. We introduce (1 + lambda) and (mu + lambda) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.
我们介绍了一种用于多目标优化问题的简单进化算法,称为帕累托存档进化策略(PAES)。我们认为,PAES可能代表了能够在帕累托最优集中生成多样化解的最简单的非平凡算法。该算法的最简形式是一种采用局部搜索的(1 + 1)进化策略,但使用先前找到的解的参考存档来确定当前解向量和候选解向量的近似支配排名。(1 + 1)-PAES旨在作为一种基线方法,以便与更复杂的方法进行比较。当局部搜索似乎优于基于种群的方法或与之具有竞争力时,它在某些实际应用中也可能表现良好。我们引入了PAES的(1 + λ)和(μ + λ)变体作为对基本算法的扩展。在一组包含六个测试函数的多样化测试集上,将PAES的六种变体与小生境帕累托遗传算法和非支配排序遗传算法的变体进行了比较。使用将多次优化运行生成的可达表面简化为一组单变量分布的技术对结果进行了分析和呈现。这使得可以出于比较目的进行标准统计分析。我们的结果提供了强有力的证据,表明PAES在一系列多目标优化任务中表现始终良好。