Suppr超能文献

具有结果依赖随访的纵向研究中的参数估计。

Parameter estimation in longitudinal studies with outcome-dependent follow-up.

作者信息

Lipsitz Stuart R, Fitzmaurice Garrett M, Ibrahim Joseph G, Gelber Richard, Lipshultz Steven

机构信息

Department of Biometry and Epidemiology, Medical University of South Carolina, Charleston 29425, USA.

出版信息

Biometrics. 2002 Sep;58(3):621-30. doi: 10.1111/j.0006-341x.2002.00621.x.

Abstract

In many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of prespecified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity; i.e., those individuals with poorer health outcomes may have more frequent follow-up measurements and the intervals between their repeated measurements may be shorter. In this article, we consider estimation of regression parameters in models for longitudinal data where the follow-up times are not fixed by design but can depend on previous outcomes. In particular, we focus on general linear models for longitudinal data where the repeated measures are assumed to have a multivariate Gaussian distribution. We consider assumptions regarding the follow-up time process that result in the likelihood function separating into two components: one for the follow-up time process, the other for the outcome process. The practical implication of this separation is that the former process can be ignored when making likelihood-based inferences about the latter; i.e., maximum likelihood (ML) estimation of the regression parameters relating the mean of the longitudinal outcomes to covariates does not require that a model for the distribution of follow-up times be specified. As a result, standard statistical software, e.g., SAS PROC MIXED (Littell et al., 1996, SAS System for Mixed Models), can be used to analyze the data. However, we also demonstrate that misspecification of the model for the covariance among the repeated measures will, in general, result in regression parameter estimates that are biased. Furthermore, results of a simulation study indicate that the potential bias due to misspecification of the covariance can be quite considerable in this setting. Finally, we illustrate these results using data from a longitudinal observational study (Lipshultz et al., 1995, New England Journal of Medicine 332, 1738-1743) that explored the cardiotoxic effects of doxorubicin chemotherapy for the treatment of acute lymphoblastic leukemia in children.

摘要

在许多观察性研究中,个体随时间被反复测量,尽管不一定是在一组预先指定的场合。相反,个体可能在不规则的间隔进行测量,健康结果较差的个体被测量的频率和规律性会稍高一些;也就是说,健康结果较差的个体可能有更频繁的随访测量,且他们重复测量之间的间隔可能更短。在本文中,我们考虑纵向数据模型中回归参数的估计,其中随访时间不是设计固定的,而是可能取决于先前的结果。特别地,我们关注纵向数据的一般线性模型,其中重复测量被假定具有多元高斯分布。我们考虑关于随访时间过程的假设,这些假设导致似然函数分解为两个部分:一个用于随访时间过程,另一个用于结果过程。这种分解的实际意义在于,在对后者进行基于似然的推断时,可以忽略前者过程;即,将纵向结果的均值与协变量相关联的回归参数的最大似然(ML)估计不需要指定随访时间分布的模型。因此,可以使用标准统计软件,例如SAS PROC MIXED(Littell等人,1996年,《混合模型的SAS系统》)来分析数据。然而,我们也证明,重复测量之间协方差模型的错误设定通常会导致回归参数估计有偏差。此外,一项模拟研究的结果表明,在这种情况下,由于协方差错误设定导致的潜在偏差可能相当大。最后,我们使用一项纵向观察性研究(Lipshultz等人,1995年,《新英格兰医学杂志》332卷,1738 - 1743页)的数据来说明这些结果,该研究探讨了阿霉素化疗对儿童急性淋巴细胞白血病治疗的心脏毒性作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验