Wang You-Gan, Lin Xu
Department of Statistics and Applied Probability, National University of Singapore, 3 Science Drive 2, Singapore 117546.
Biometrics. 2005 Jun;61(2):413-21. doi: 10.1111/j.1541-0420.2005.00321.x.
The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth.
广义估计方程(GEE)方法基于广义线性模型框架,但允许指定一个工作矩阵来对受试者内相关性进行建模。方差通常被假定为均值的已知函数。本文研究了错误指定方差函数对定量反应均值参数估计量的影响。我们的数值研究表明:(1)即使相关性结构被错误指定,正确指定方差函数仍可提高估计效率;(2)方差函数的错误指定对聚类内协变量估计量的影响比对聚类水平协变量的影响大得多;(3)如果方差函数被错误指定,正确选择相关性结构不一定能提高估计效率。我们使用一个来自奶牛生长的真实数据集来说明不同方差函数的影响。