Todd J. J., Vodkin L. O.
Plant and Animal Biotechnology Laboratory, Department of Agronomy, University of Illinois, Urbana, Illinois 61801.
Plant Physiol. 1993 Jun;102(2):663-670. doi: 10.1104/pp.102.2.663.
The dominant I gene inhibits accumulation of anthocyanin pigments in the epidermal layer of soybean (Glycine max) seed coats. Seed-coat color is also influenced by the R locus and by the pubescence color alleles (T, tawny; t, gray). Protein and RNA from cultivars with black (i,R,T) and brown (i,r,T) seed coats are difficult to extract. To determine the nature of the interfering plant products, we examined seed-coat extracts from Clark isogenic lines for flavonoids, anthocyanins, and possible proanthocyanidins by thin-layer chromatography. We show that yellow seed-coat varieties (I) do not accumulate anthocyanins (anthocyanidin glycosides) or proanthocyanidins (polymeric anthocyanidins). Mature, black (i,R,T) and imperfect-black (i,R,t) seed coats contained anthocyanins, whereas mature, brown (i,r,T) and buff (i,r,t) seed coats did not contain anthocyanins. In contrast, all colored (i) genotypes tested positive for the presence of proanthocyanidins by butanol/ HCl and 0.5% vanillin assays. Immature, black (i,R,T) and brown (i,r,T) seed coats contained significant amounts of procyanidin, a 3[prime],4[prime]-hydroxylated proanthocyanidin. Immature, black (i,R,T) or brown (i,r,T) seed-coat extracts also tested positive for the ability to precipitate proteins in a radial diffusion assay and to bind RNA in vitro. Imperfect-black (i,R,t) or buff (i,r,t) seed coats contained lesser amounts of propelargonidin, a 4[prime]-hydroxylated proanthocyanidin. Seed-coat extracts from these genotypes did not have the ability to precipitate protein or bind to RNA. In summary, the dominant I gene controls inhibition of not only anthocyanins but also proanthocyanidins in soybean seed coats. In homozygous recessive i genotypes, the T-t gene pair determines the types of proanthocyanidins present, which is consistent with the hypothesis that the T locus encodes a microsomal 3[prime]-flavonoid hydroxylase.
显性I基因抑制大豆(Glycine max)种皮表皮层中花青素色素的积累。种皮颜色也受R位点和茸毛色等位基因(T,黄褐色;t,灰色)的影响。来自具有黑色(i,R,T)和褐色(i,r,T)种皮的品种的蛋白质和RNA很难提取。为了确定干扰性植物产物的性质,我们通过薄层色谱法检测了Clark同基因系种皮提取物中的类黄酮、花青素和可能的原花青素。我们发现,黄色种皮品种(I)不积累花青素(花青素糖苷)或原花青素(聚合花青素)。成熟的黑色(i,R,T)和不完全黑色(i,R,t)种皮含有花青素,而成熟的褐色(i,r,T)和浅黄色(i,r,t)种皮不含花青素。相比之下,通过丁醇/HCl和0.5%香草醛测定,所有有色(i)基因型的原花青素检测均呈阳性。未成熟的黑色(i,R,T)和褐色(i,r,T)种皮含有大量的原花青素,一种3′,4′-羟基化的原花青素。未成熟的黑色(i,R,T)或褐色(i,r,T)种皮提取物在径向扩散试验中沉淀蛋白质和体外结合RNA的能力检测也呈阳性。不完全黑色(i,R,t)或浅黄色(i,r,t)种皮含有较少的原花青定,一种4′-羟基化的原花青素。这些基因型的种皮提取物没有沉淀蛋白质或结合RNA的能力。总之,显性I基因不仅控制大豆种皮中花青素而且控制原花青素的抑制作用。在纯合隐性i基因型中,T-t基因对决定了存在的原花青素类型,这与T位点编码微粒体3′-类黄酮羟化酶的假设一致。