Townsend Nathan E, Gore Christopher J, Hahn Allan G, McKenna Michael J, Aughey Robert J, Clark Sally A, Kinsman Tahnee, Hawley John A, Chow Chin-Moi
School of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales 2141, Australia.
J Appl Physiol (1985). 2002 Oct;93(4):1498-505. doi: 10.1152/japplphysiol.00381.2002.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.
本研究旨在确定“高住低训”(LHTL)模拟海拔暴露是否会增加训练有素的耐力运动员的低氧通气反应(HVR)。33名自行车运动员/铁人三项运动员被分为三组:连续20晚进行低氧暴露(LHTLc,n = 12)、20晚进行间歇性低氧暴露(四个5晚的低氧阶段,每个阶段穿插2晚常氧,LHTLi,n = 10)或对照组(Con,n = 11)。LHTLc组和LHTLi组在常压低氧环境(约2650米)下每天夜间睡眠8 - 10小时;Con组在环境条件下(600米)睡眠。在低氧暴露前(Pre)、暴露1、3、10和15晚后(分别为N1、N3、N10和N15)以及暴露第20晚后的2晚(Post),于常氧状态下测量静息等碳酸血症HVR(ΔVE/ΔSp(O₂),其中VE为分钟通气量,Sp(O₂)为血氧饱和度)。在每次HVR测试前,于静息状态下呼吸室内空气时测量呼气末PCO₂(PET(CO₂))和VE。在N1(0.56±0.32对0.28±0.16)、N3(0.69±0.30对0.36±0.24)、N10(0.79±0.36对0.34±0.14)、N15(1.00±0.38对0.36±0.23)和Post(0.79±0.37对0.36±0.26)时,LHTLc组的HVR(升·分钟⁻¹·%⁻¹)高于Con组(P < 0.05)。在N15时,LHTLi组的HVR(0.67±0.33)高于Con组且LHTLc组高于LHTLi组(P < 0.05)。与Con组相比,在低氧暴露后的所有时间点,LHTLc组和LHTLi组的PET(CO₂)均降低(P < 0.05)。在任何时间点,VE均未观察到显著差异。我们得出结论,LHTL以时间依赖性方式增加耐力运动员的HVR,并降低常氧状态下的PET(CO₂),而VE无变化。因此,在轻度低氧环境中睡眠的耐力运动员可能会经历呼吸控制系统的变化。