Suppr超能文献

有义查尔酮合酶转基因共抑制的频率和程度取决于转基因启动子强度,并因转基因编码序列中的过早无义密码子而降低。

The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence.

作者信息

Que Q., Wang H. Y., English J. J., Jorgensen R. A.

机构信息

Environmental Horticulture, University of California, Davis, California 95616-8587.

出版信息

Plant Cell. 1997 Aug;9(8):1357-1368. doi: 10.1105/tpc.9.8.1357.

Abstract

By comparing the effects of strong and weak promoters that drive sense chalcone synthase (Chs) transgenes in large populations of independently transformed plants, we show here that a strong transgene promoter is required for high-frequency cosuppression of Chs genes and for production of the full range of cosuppression phenotypes. In addition, sense Chs transgenes driven by a cauliflower mosaic virus 35S promoter possessing a single copy of the upstream activator region (UAR) were found to produce a significantly lower degree of cosuppression than they did when the transgene promoter possessed two or four copies of the UAR. It has been shown elsewhere that 35S promoter strength increases with increasing UAR copy number. Frameshift mutations producing early nonsense codons in the Chs transgene were found to reduce the frequency and the degree of cosuppression. These results suggest that promoter strength and transcript stability determine the degree of cosuppression, supporting the hypothesis that sense cosuppression is a response to the accumulation of transcripts at high concentrations. This conclusion was shown to apply to single-copy transgenes but not necessarily to inversely repeated transgenes. The results presented here also have significance for efficient engineering of cosuppression phenotypes for use in research and agriculture.

摘要

通过比较在大量独立转化植株中驱动正义查尔酮合酶(Chs)转基因的强启动子和弱启动子的作用,我们在此表明,Chs基因的高频共抑制以及产生完整范围的共抑制表型需要一个强转基因启动子。此外,发现由具有单个上游激活区(UAR)拷贝的花椰菜花叶病毒35S启动子驱动的正义Chs转基因产生的共抑制程度明显低于转基因启动子具有两个或四个UAR拷贝时的情况。在其他地方已经表明,35S启动子强度随着UAR拷贝数的增加而增强。发现在Chs转基因中产生早期无义密码子的移码突变会降低共抑制的频率和程度。这些结果表明启动子强度和转录本稳定性决定了共抑制的程度,支持了正义共抑制是对高浓度转录本积累的一种反应这一假说。这一结论适用于单拷贝转基因,但不一定适用于反向重复转基因。这里呈现的结果对于高效构建用于研究和农业的共抑制表型也具有重要意义。

相似文献

3
Homology-based control of gene expression patterns in transgenic petunia flowers.
Dev Genet. 1998;22(1):100-9. doi: 10.1002/(SICI)1520-6408(1998)22:1<100::AID-DVG10>3.0.CO;2-D.
5
Transgenes are dispensable for the RNA degradation step of cosuppression.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9675-80. doi: 10.1073/pnas.95.16.9675.
7
Distinct extremely abundant siRNAs associated with cosuppression in petunia.
RNA. 2009 Nov;15(11):1965-70. doi: 10.1261/rna.1706109. Epub 2009 Sep 23.
10
Consistent transcriptional silencing of 35S-driven transgenes in gentian.
Plant J. 2005 Nov;44(4):541-56. doi: 10.1111/j.1365-313X.2005.02556.x.

引用本文的文献

1
A transcription factor ensemble orchestrates bundle sheath expression in rice.
Nat Commun. 2025 Jul 31;16(1):7040. doi: 10.1038/s41467-025-62087-0.
3
4
Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector.
Biotechnol Bioeng. 2022 Jun;119(6):1660-1672. doi: 10.1002/bit.28073. Epub 2022 Mar 16.
5
MAP30 transgenic tobacco lines: from silencing to inducing.
Mol Biol Rep. 2021 Oct;48(10):6719-6728. doi: 10.1007/s11033-021-06662-w. Epub 2021 Aug 21.
6
Perspective: 50 years of plant chromosome biology.
Plant Physiol. 2021 Apr 2;185(3):731-753. doi: 10.1093/plphys/kiaa108.
8
The Whys and Wherefores of Transitivity in Plants.
Front Plant Sci. 2020 Aug 31;11:579376. doi: 10.3389/fpls.2020.579376. eCollection 2020.
9
Genetic and Global Epigenetic Modification, Which Determines the Phenotype of Transgenic Rice?
Int J Mol Sci. 2020 Mar 6;21(5):1819. doi: 10.3390/ijms21051819.
10
The Integration of Multiple Nuclear-Encoded Transgenes in the Green Alga Results in Higher Transcription Levels.
Front Plant Sci. 2020 Feb 14;10:1784. doi: 10.3389/fpls.2019.01784. eCollection 2019.

本文引用的文献

1
Cosuppression, flower color patterns, and metastable gene expression States.
Science. 1995 May 5;268(5211):686-91. doi: 10.1126/science.268.5211.686.
4
RNA-Mediated Virus Resistance: Role of Repeated Transgenes and Delineation of Targeted Regions.
Plant Cell. 1996 Dec;8(12):2277-2294. doi: 10.1105/tpc.8.12.2277.
5
How and Why Do Plants Inactivate Homologous (Trans)genes?
Plant Physiol. 1995 Mar;107(3):679-685. doi: 10.1104/pp.107.3.679.
6
Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise?
Cell. 1997 Jan 10;88(1):1-4. doi: 10.1016/s0092-8674(00)81850-4.
8
Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner.
Plant J. 1996 Sep;10(3):415-24. doi: 10.1046/j.1365-313x.1996.10030415.x.
9
Improved method for PCR-mediated site-directed mutagenesis.
Nucleic Acids Res. 1994 Feb 11;22(3):541-2. doi: 10.1093/nar/22.3.541.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验