Suppr超能文献

色素性皮肤病变的自动诊断

Automated diagnosis of pigmented skin lesions.

作者信息

Rubegni Pietro, Cevenini Gabriele, Burroni Marco, Perotti Roberto, Dell'Eva Giordana, Sbano Paolo, Miracco Clelia, Luzi Pietro, Tosi Piero, Barbini Paolo, Andreassi Lucio

机构信息

Department of Dermatology, University of Siena, Siena, Italy.

出版信息

Int J Cancer. 2002 Oct 20;101(6):576-80. doi: 10.1002/ijc.10620.

Abstract

Since advanced melanoma remains practically incurable, early detection is an important step toward a reduction in mortality. High expectations are entertained for a technique known as dermoscopy or epiluminescence light microscopy; however, evaluation of pigmented skin lesions by this method is often extremely complex and subjective. To obviate the problem of qualitative interpretation, methods based on mathematical analysis of pigmented skin lesions, such as digital dermoscopy analysis, have been developed. In the present study, we used a digital dermoscopy analyzer (DBDermo-Mips system) to evaluate a series of 588 excised, clinically atypical, flat pigmented skin lesions (371 benign, 217 malignant). The analyzer evaluated 48 parameters grouped into 4 categories (geometries, colors, textures and islands of color), which were used to train an artificial neural network. To evaluate the diagnostic performance of the neural network and to check it during the training process, we used the error area over the receiver operating characteristic curve. The discriminating power of the digital dermoscopy analyzer plus artificial neural network was compared with histologic diagnosis. A feature selection procedure indicated that as few as 13 of the variables were sufficient to discriminate the 2 groups of lesions, and this also ensured high generalization power. The artificial neural network designed with these variables enabled a diagnostic accuracy of about 94%. In conclusion, the good diagnostic performance and high speed in reading and analyzing lesions (real time) of our method constitute an important step in the direction of automated diagnosis of pigmented skin lesions.

摘要

由于晚期黑色素瘤实际上仍无法治愈,早期检测是降低死亡率的重要一步。人们对一种称为皮肤镜检查或表皮透光显微镜检查的技术寄予厚望;然而,用这种方法评估色素沉着性皮肤病变往往极其复杂且主观。为了避免定性解释的问题,已经开发了基于色素沉着性皮肤病变数学分析的方法,如数字皮肤镜分析。在本研究中,我们使用数字皮肤镜分析仪(DBDermo-Mips系统)评估了一系列588例切除的、临床非典型的扁平色素沉着性皮肤病变(371例良性,217例恶性)。该分析仪评估了分为4类(几何形状、颜色、纹理和颜色岛)的48个参数,这些参数用于训练人工神经网络。为了评估神经网络的诊断性能并在训练过程中进行检查,我们使用了受试者操作特征曲线上的误差面积。将数字皮肤镜分析仪加人工神经网络的鉴别能力与组织学诊断进行了比较。特征选择程序表明,仅13个变量就足以区分两组病变,这也确保了高泛化能力。用这些变量设计的人工神经网络诊断准确率约为94%。总之,我们方法良好的诊断性能以及在读取和分析病变(实时)方面的高速度是色素沉着性皮肤病变自动化诊断方向上的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验