Suppr超能文献

用于预测有纹理背景上文本可读性的可辨别性度量。

Discriminability measures for predicting readability of text on textured backgrounds.

作者信息

Scharff L F, Hill A L, Ahumada A J

机构信息

Stephen F. Austin State University, Department of Psychology, Nacogdoches, Texas, 75962, USA.

出版信息

Opt Express. 2000 Feb 14;6(4):81-91. doi: 10.1364/oe.6.000081.

Abstract

Several discriminability measures were examined for their ability to predict reading search times for three levels of text contrast and a range of backgrounds (plain, a periodic texture, and four spatial-frequency-filtered textures created from the periodic texture). Search times indicate that these background variations only affect readability when the text contrast is low, and that spatial frequency content of the background affects readability. These results were not well predicted by the single variables of text contrast (Spearman rank correlation = -0.64) and background RMS contrast (0.08), but a global masking index and a spatial-frequency-selective masking index led to better predictions (-0.84 and -0.81, respectively).

摘要

研究了几种可辨别性度量方法,以评估它们预测在三种文本对比度水平和一系列背景(纯色、周期性纹理以及由周期性纹理创建的四种空间频率滤波纹理)下阅读搜索时间的能力。搜索时间表明,这些背景变化仅在文本对比度较低时影响可读性,并且背景的空间频率内容会影响可读性。文本对比度的单一变量(斯皮尔曼等级相关系数=-0.64)和背景均方根对比度(0.08)并不能很好地预测这些结果,但全局掩蔽指数和空间频率选择性掩蔽指数能做出更好的预测(分别为-0.84和-0.81)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验